Improving the arterial input function in dynamic contrast enhanced MRI by fitting the signal in the complex plane

Dynamic contrast enhanced (DCE) imaging is a widely used technique in oncologic imaging. An essential prerequisite for obtaining quantitative values from DCE‐MRI is the determination of the arterial input function (AIF). However, it is very challenging to accurately estimate the AIF using MR. A comprehensive model, which uses complex data instead of either magnitude or phase, was developed to improve AIF estimation.

[1]  Masoom A Haider,et al.  Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. , 2008, International journal of radiation oncology, biology, physics.

[2]  Matthew S Davenport,et al.  Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. , 2013, Radiology.

[3]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[4]  G. Wright,et al.  Rapid high‐resolution T1 mapping by variable flip angles: Accurate and precise measurements in the presence of radiofrequency field inhomogeneity , 2006, Magnetic resonance in medicine.

[5]  Paul Strauss,et al.  Magnetic Resonance Imaging Physical Principles And Sequence Design , 2016 .

[6]  A. Padhani Dynamic contrast‐enhanced MRI in clinical oncology: Current status and future directions , 2002, Journal of magnetic resonance imaging : JMRI.

[7]  T E Conturo,et al.  Arterial input functions from MR phase imaging , 1996, Magnetic resonance in medicine.

[8]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[9]  J. Battermann,et al.  Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences. , 2010, International journal of radiation oncology, biology, physics.

[10]  Uwe Arz,et al.  In-phase/quadrature covariance-matrix representation of the uncertainty of vectors and complex numbers , 2006, 2006 68th ARFTG Conference: Microwave Measurement.

[11]  A. Jackson,et al.  Experimentally‐derived functional form for a population‐averaged high‐temporal‐resolution arterial input function for dynamic contrast‐enhanced MRI , 2006, Magnetic resonance in medicine.

[12]  M. Viergever,et al.  Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI , 2001, Magnetic resonance in medicine.

[13]  Hai-Ling Margaret Cheng,et al.  Investigation and optimization of parameter accuracy in dynamic contrast‐enhanced MRI , 2008, Journal of magnetic resonance imaging : JMRI.

[14]  R M Weisskoff,et al.  Water diffusion and exchange as they influence contrast enhancement , 1997, Journal of magnetic resonance imaging : JMRI.

[15]  C. Ng,et al.  Reproducibility of perfusion parameters in dynamic contrast-enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses. , 2010, AJR. American journal of roentgenology.

[16]  M Recht,et al.  Method for the quantitative assessment of contrast agent uptake in dynamic contrast‐enhanced MRI , 1994, Magnetic resonance in medicine.

[17]  Xavier Golay,et al.  Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla , 2004, Magnetic resonance in medicine.

[18]  Henry Rusinek,et al.  Use of cardiac output to improve measurement of input function in quantitative dynamic contrast‐enhanced MRI , 2009, Journal of magnetic resonance imaging : JMRI.

[19]  Alan Jackson,et al.  Dynamic contrast-enhanced magnetic resonance imaging in oncology , 2005 .

[20]  Michal Bartoš,et al.  Distributed capillary adiabatic tissue homogeneity model in parametric multi‐channel blind AIF estimation using DCE‐MRI , 2016, Magnetic resonance in medicine.

[21]  Marco van Vulpen,et al.  Phase‐based arterial input function measurements in the femoral arteries for quantification of dynamic contrast‐enhanced (DCE) MRI and comparison with DCE‐CT , 2011, Magnetic resonance in medicine.

[22]  F. Schick,et al.  Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in Human Blood Plasma at 0.2, 1.5, and 3 Tesla , 2006, Investigative radiology.

[23]  C. Bos,et al.  The magnetic susceptibility effect of gadolinium-based contrast agents on PRFS-based MR thermometry during thermal interventions , 2013, Journal of therapeutic ultrasound.

[24]  M. Bronskill,et al.  T1, T2 relaxation and magnetization transfer in tissue at 3T , 2005, Magnetic resonance in medicine.

[25]  Qin Qin,et al.  Hematocrit and oxygenation dependence of blood 1H2O T1 at 7 tesla , 2013, Magnetic resonance in medicine.

[26]  Hai-Ling Margaret Cheng,et al.  T1 measurement of flowing blood and arterial input function determination for quantitative 3D T1‐weighted DCE‐MRI , 2007, Journal of magnetic resonance imaging : JMRI.

[27]  Edward V R DiBella,et al.  A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results , 2010, Physics in medicine and biology.

[28]  Jun Yu,et al.  Combining phase and magnitude information for contrast agent quantification in dynamic contrast‐enhanced MRI using statistical modeling , 2015, Magnetic resonance in medicine.

[29]  X. Zhang,et al.  In vivo blood T1 measurements at 1.5 T, 3 T, and 7 T , 2013, Magnetic resonance in medicine.

[30]  G. Cron,et al.  Erratum to Dynamic contrast‐enhanced MRI in mice at high field: Estimation of the arterial input function can be achieved by phase imaging (Magn Reson Med 2014;71:544–550) , 2014 .

[31]  D. Parker,et al.  Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences , 2008, Physics in medicine and biology.

[32]  E. Glatstein Small (<2.0-cm) Breast Cancers: Mammographic and US Findings at US-guided Cryoablation—Initial ExperienceRoubidoux MA, Sabel MS, Bailey JE, et al (Univ of Michigan, Ann Arbor) Radiology 233:857-867, 2004§ , 2006 .

[33]  R. Wirestam,et al.  Effects of inflow and radiofrequency spoiling on the arterial input function in dynamic contrast‐enhanced MRI: A combined phantom and simulation study , 2011, Magnetic resonance in medicine.