Material design of elastic structures using Voronoi cells

This is the peer reviewed version of the following article: [Podesta JM, Mendez CG, Toro S, Huespe AE, Oliver J. Material design of elastic structures using Voronoi cells. Int J Numer Methods Eng. 2018;115:269–292. https://doi.org/10.1002/nme.5804], which has been published in final form at https://doi.org/10.1002/nme.5804. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

[1]  Tongxi Yu,et al.  Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation , 2016 .

[2]  Günter Leugering,et al.  A Sequential Convex Semidefinite Programming Algorithm with an Application to Multiple-Load Free Material Optimization , 2009, SIAM J. Optim..

[3]  Samuel Amstutz,et al.  Analysis of a level set method for topology optimization , 2011, Optim. Methods Softw..

[4]  S. Cowin,et al.  On the Identification of Material Symmetry for Anisotropic Elastic Materials , 1987 .

[5]  U. Ringertz On finding the optimal distribution of material properties , 1993 .

[6]  P. Pedersen On optimal orientation of orthotropic materials , 1989 .

[7]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[8]  O. Sigmund A new class of extremal composites , 2000 .

[9]  Alemseged Gebrehiwot Weldeyesus,et al.  A primal-dual interior point method for large-scale free material optimization , 2015, Comput. Optim. Appl..

[10]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[11]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[12]  A. Huespe,et al.  Computational material design for acoustic cloaking , 2017 .

[13]  Martin P. Bendsøe,et al.  Free material optimization via mathematical programming , 1997, Math. Program..

[14]  Michael Stingl,et al.  Efficient Two-Scale Optimization of Manufacturable Graded Structures , 2012, SIAM J. Sci. Comput..

[15]  Alejandro R. Diaz,et al.  Designing materials with prescribed elastic properties using polygonal cells , 2003 .

[16]  Daniel J. Solove A Taxonomy of Privacy , 2006 .

[17]  C. G. Lopes,et al.  Topological derivative-based topology optimization of structures subject to multiple load-cases , 2015 .

[18]  Pierre Ropars,et al.  Invariant-based reconstruction of bidimensional elasticity tensors , 2016 .

[19]  G. Milton,et al.  Which Elasticity Tensors are Realizable , 1995 .

[20]  A. A. Zadpoor,et al.  Auxetic mechanical metamaterials , 2017 .

[21]  M. Stolpe,et al.  Benchmarking optimization solvers for structural topology optimization , 2015 .

[22]  Javier Oliver,et al.  Topological sensitivity analysis in heterogeneous anisotropic elasticity problem: theoretical and computational aspects , 2016 .

[23]  M. Vianello An integrity basis for plane elasticity tensors , 1997 .

[24]  M. Bendsøe,et al.  Optimal design of material properties and material distribution for multiple loading conditions , 1995 .

[25]  J. Zowe,et al.  Free material optimization: recent progress , 2008 .

[26]  E. A. de Souza Neto,et al.  Topological derivative for multi‐scale linear elasticity models applied to the synthesis of microstructures , 2010 .

[27]  Martin P. Bendsøe,et al.  An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design , 1994 .