The efficiency of the spiral- in of a black hole to the Galactic centre

We study the efficiency at which a black hole or dense star cluster spirals in to the Galactic Centre. This process takes place on a dynamical friction time-scale, which depends on the value of the Coulomb logarithm (In Λ). We determine the accurate value of this parameter using the direct N-body method, a tree algorithm and a particle-mesh technique with up to two million plus one particles. The three different techniques are in excellent agreement. Our measurement for the Coulomb logarithm appears to be independent of the number of particles. We conclude that In A = 6.6 ′ 0.6 for a massive point particle in the inner few parsec of the Galactic bulge. For an extended object, such as a dense star cluster, In A is smaller, with a value of the logarithm argument A inversely proportional to the object size.

[1]  Eitan Grinspun,et al.  A discrete geometric approach for simulating the dynamics of thin viscous threads , 2012, J. Comput. Phys..

[2]  L. Mayer,et al.  On the life and death of satellite haloes , 2003, astro-ph/0301271.

[3]  J. Makino,et al.  To Circularize or Not To Circularize?—Orbital Evolution of Satellite Galaxies , 2002, astro-ph/0208452.

[4]  R. Cionco,et al.  Orbital migrations in planetesimal discs: N-body simulations and the resonant dynamical friction , 2002 .

[5]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[6]  M. Fellhauer,et al.  SUPERBOX – an efficient code for collisionless galactic dynamics , 2000, astro-ph/0007226.

[7]  P. Hut,et al.  Star cluster ecology-IV. Dissection of an open star cluster: photometry , 2000, astro-ph/0005248.

[8]  Ortwin Gerhard,et al.  The Galactic Center He I Stars: Remains of a Dissolved Young Cluster? , 2000 .

[9]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[10]  E. Athanassoula,et al.  Optimal softening for force calculations in collisionless N-body simulations , 1999, astro-ph/9912467.

[11]  E. Serabyn,et al.  Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999 .

[12]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[13]  M. Colpi,et al.  Dynamical Friction and the Evolution of Satellites in Virialized Halos: The Theory of Linear Response , 1999, astro-ph/9907088.

[14]  G. Lake,et al.  Substructure in Dark Halos: Orbital Eccentricities and Dynamical Friction , 1998, astro-ph/9811229.

[15]  J. C. Muzzio,et al.  Orbital decay of galactic satellites as a result of dynamical friction , 1997 .

[16]  M. Colpi Accretion of a Satellite onto a Spherical Galaxy: Binary Evolution and Orbital Decay , 1997, astro-ph/9707348.

[17]  M. Colpi,et al.  Drag on a Satellite Moving across a Spherical Galaxy: Tidal and Frictional Forces in Short-lived Encounters , 1997, astro-ph/9707347.

[18]  J. Makino Merging of Galaxies with Central Black Holes. II. Evolution of the Black Hole Binary and the Structure of the Core , 1996, astro-ph/9608161.

[19]  Alfred Krabbe,et al.  The Nuclear Cluster of the Milky Way: Star Formation and Velocity Dispersion in the Central 0.5 Parsec , 1995 .

[20]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[21]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[22]  G. Rieke,et al.  IRS 16: The Galaxy's Central Wimp? , 1993 .

[23]  Eyal Maoz A fluctuation–dissipation approach to dynamical friction in non-homogeneous backgrounds , 1993 .

[24]  Mark R. Morris,et al.  Massive star formation near the Galactic center and the fate of the stellar remnants , 1993 .

[25]  B. Rånby,et al.  Surface modification by continuous graft copolymerization. I. Photoinitiated graft copolymerization onto polyethylene tape film surface , 1990 .

[26]  H. Okuda,et al.  AFGL 2004: An infrared quintuplet near the Galactic center , 1990 .

[27]  T. Nakagawa,et al.  An infrared quintuplet near the Galactic center , 1990 .

[28]  Piet Hut,et al.  Use of Supercomputers in Stellar Dynamics , 1986 .

[29]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[30]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[31]  S. J. Aarseth,et al.  Dynamical Evolution of Clusters Of Galaxies, II , 1963 .

[32]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .

[33]  S. Peale,et al.  CELESTIAL MECHANICS AND DYNAMICAL , 2018 .

[34]  Alex Rapaport,et al.  Mpi-2: extensions to the message-passing interface , 1997 .

[35]  Naoto Kobayashi,et al.  Object 17: Another Cluster of Emission-Line Stars Near the Galactic Center , 1995 .

[36]  S. Aarseth,et al.  A chain regularization method for the few-body problem , 1989 .

[37]  S. McMillan The vectorization of small-n integrators , 1986 .

[38]  J. Brackbill,et al.  Multiple time scales , 1985 .

[39]  Sverre J. Aarseth,et al.  Direct integration methods of theN-body problem , 1971 .

[40]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[41]  E. Stiefel,et al.  Perturbation theory of Kepler motion based on spinor regularization. , 1965 .

[42]  A. Leopold,et al.  Journal für die reine und angewandte Mathematik , 1892 .