Particle-size distribution and packing fraction of geometric random packings.

This paper addresses the geometric random packing and void fraction of polydisperse particles. It is demonstrated that the bimodal packing can be transformed into a continuous particle-size distribution of the power law type. It follows that a maximum packing fraction of particles is obtained when the exponent (distribution modulus) of the power law function is zero, which is to say, the cumulative finer fraction is a logarithmic function of the particle size. For maximum geometric packings composed of sieve fractions or of discretely sized particles, the distribution modulus is positive (typically 0<alpha<0.37). Furthermore, an original and exact expression is derived that predicts the packing fraction of the polydisperse power law packing, and which is governed by the distribution exponent, size width, mode of packing, and particle shape only. For a number of particle shapes and their packing modes (close, loose), these parameters are given. The analytical expression of the packing fraction is thoroughly compared with experiments reported in the literature, and good agreement is found.

[1]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[2]  James E. Funk,et al.  Predictive Process Control of Crowded Particulate Suspensions , 1994 .

[3]  H. Herrmann,et al.  Searching for the perfect packing , 2003 .

[4]  D. Miracle,et al.  Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys , 2001 .

[5]  Societe des Ingenieurs Civils de France , 2022, Journal of the American Institute of Electrical Engineers.

[6]  Salvatore Torquato,et al.  Diversity of order and densities in jammed hard-particle packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Wiley,et al.  Numerical simulation of the dense random packing of a binary mixture of hard spheres: Amorphous metals. , 1987, Physical review. B, Condensed matter.

[8]  Nduka Nnamdi (Ndy) Ekere,et al.  Computer simulation of random packing of unequal particles. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Albert P. Philipse,et al.  The Random Contact Equation and Its Implications for (Colloidal) Rods in Packings, Suspensions, and Anisotropic Powders , 1996 .

[10]  Packing of Mixtures of Hard Spheres , 1960, Nature.

[11]  G. D. Scott,et al.  Packing of Spheres: Packing of Equal Spheres , 1960, Nature.

[12]  G. Darmois,et al.  LE BETON HYDRAULIQUE - CONNAISSANCE ET PRATIQUE , 1982 .

[13]  P. Jalali,et al.  Atomic size effect on critical cooling rate and glass formation , 2005 .

[14]  N. Ashcroft,et al.  Weighted-density-functional theory of nonuniform fluid mixtures: Application to freezing of binary hard-sphere mixtures. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  J. Lebowitz,et al.  Thermodynamic Properties of Mixtures of Hard Spheres , 1964 .

[16]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[17]  A. H. M. Andreasen Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten) , 1930 .

[18]  F. Anderegg Grading Aggregates - II. - The Application of Mathematical Formulas to Mortars , 1931 .

[19]  James G. Berryman,et al.  Random close packing of hard spheres and disks , 1983 .

[20]  J. S. Reed,et al.  Improved Equation of the Continuous Particle Size Distribution for Dense Packing , 1990 .

[21]  Anuraag R. Kansal,et al.  Computer generation of dense polydisperse sphere packings , 2002 .

[22]  H. Herrmann,et al.  Space-filling bearings in three dimensions. , 2003, Physical review letters.

[23]  Aleksandar Donev,et al.  Experiments on random packings of ellipsoids. , 2005, Physical review letters.

[24]  Hong Yong Sohn,et al.  The effect of particle size distribution on packing density , 1968 .

[25]  O. Redlich,et al.  On the Thermodynamics of Solutions. IV. The Determination of Liquid--Vapor Equilibria by Measuring the Total Pressure , 1949 .

[26]  James E. Funk,et al.  Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing , 1993 .

[27]  C. C. Furnas Grading Aggregates - I. - Mathematical Relations for Beds of Broken Solids of Maximum Density , 1931 .

[28]  D. Kilgour,et al.  The density of random close packing of spheres , 1969 .