Quantum molecular motion in the mixed ion-radical complex, [(H2O)(H2S)].

The cation dimer of water and hydrogen sulfide, [(H2O)(H2S)]+, serves as a fundamental model for the oxidation chemistry of H2S. The known oxidative metabolism of H2S by biological species in sulfur-rich environments has motivated the study of the inherent properties of this benchmark complex, with possible mechanistic implications for modern water oxidation chemistry. The low-energy isomer of this open-shell ion is a proton-transferred (PT) structure, H3O+SH˙. An alternative PT structure, H3S+OH˙, and a hemibonded (HB) isomer, [H2O·SH2]+, are also stable isomers, placing this complex intermediate to known (H2O)2+ (PT) and (H2S)2+ (HB) limiting regimes. This intermediate character suggested the possibility of unique molecular motion, even in the vibrational ground state. Path integral molecular dynamics and anharmonic vibrational spectroscopy simulations have been performed in this study, in order to understand the inherent quantum molecular motion of this complex. The resulting structural distributions were found to deviate significantly from both classical and harmonic analyses, including the observation of large-amplitude anharmonic motion of the central proton and nearly free rotation of the terminal hydrogens. The predicted vibrational spectra are particularly unique and suggest characteristic signatures of the strong electronic interactions and anharmonic vibrational mode couplings in this radical cation.

[1]  J. Elguero,et al.  A computational study on [(PH2X)2]·+ homodimers involving intermolecular two-center three-electron bonds , 2016, Structural Chemistry.

[2]  M. Hanson-Heine,et al.  Intermediate vibrational coordinate localization with harmonic coupling constraints. , 2016, The Journal of chemical physics.

[3]  P. Smereka,et al.  Exploring the relationship between vibrational mode locality and coupling using constrained optimization. , 2016, The Journal of chemical physics.

[4]  P. Smereka,et al.  Optimizing Vibrational Coordinates To Modulate Intermode Coupling. , 2016, Journal of chemical theory and computation.

[5]  E. Duffy,et al.  Probing the Hydrogen-Bonded Water Network at the Active Site of a Water Oxidation Catalyst: [Ru(bpy)(tpy)(H2O)](2+)·(H2O)(0-4). , 2015, The journal of physical chemistry. A.

[6]  M. Head‐Gordon,et al.  Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. , 2015, The Journal of chemical physics.

[7]  R. Steele,et al.  Structural progression in clusters of ionized water, (H2O)n=1-5(+). , 2015, The journal of physical chemistry. A.

[8]  C. Jacob,et al.  Efficient calculation of anharmonic vibrational spectra of large molecules with localized modes. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[9]  R. Steele,et al.  Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates. , 2014, The Journal of chemical physics.

[10]  Alán Aspuru-Guzik,et al.  Advances in molecular quantum chemistry contained in the Q-Chem 4 program package , 2014, Molecular Physics.

[11]  J. Kuo,et al.  Structural evolution and solvation of the OH radical in ionized water radical cations (H2O)n(+), n = 5-8. , 2014, Physical chemistry chemical physics : PCCP.

[12]  Yan Cheng,et al.  Ab initio investigation of the lower energy candidate structures for (H₂O)₅⁺ water cluster. , 2014, The Journal of chemical physics.

[13]  N. Besley,et al.  The structure and bonding of mixed component radical cation clusters , 2014 .

[14]  D. McdanielNeal,et al.  Molecular Water Oxidation Catalysts from Iron , 2014 .

[15]  Laia Francàs,et al.  Ru‐Based Water Oxidation Catalysts , 2014 .

[16]  J. Mayer,et al.  Developing Molecular Copper Complexes for Water Oxidation , 2014 .

[17]  Nicholas A Besley,et al.  Structure and bonding in ionized water clusters. , 2013, The journal of physical chemistry. A.

[18]  A. Fujii,et al.  Characterization of a solvent-separated ion-radical pair in cationized water networks: infrared photodissociation and Ar-attachment experiments for water cluster radical cations (H2O)n+(n = 3-8). , 2013, The journal of physical chemistry. A.

[19]  E. Wang,et al.  Quantum simulation of low-temperature metallic liquid hydrogen , 2012, Nature Communications.

[20]  S. Snyder,et al.  H2S signalling through protein sulfhydration and beyond , 2012, Nature Reviews Molecular Cell Biology.

[21]  Javier J. Concepcion,et al.  The role of proton coupled electron transfer in water oxidation , 2012 .

[22]  J. Mayer,et al.  A soluble copper-bipyridine water-oxidation electrocatalyst. , 2012, Nature chemistry.

[23]  J. Kuo,et al.  Assessment of density functional approximations for the hemibonded structure of the water dimer radical cation. , 2012, Physical chemistry chemical physics : PCCP.

[24]  Javier J. Concepcion,et al.  Structure and electronic configurations of the intermediates of water oxidation in blue ruthenium dimer catalysis. , 2012, Journal of the American Chemical Society.

[25]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[26]  T. Meyer Catalysis: oxidizing water two ways. , 2011, Nature chemistry.

[27]  James D. Blakemore,et al.  Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. , 2011, Journal of the American Chemical Society.

[28]  T. Buonassisi,et al.  Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst , 2011, Proceedings of the National Academy of Sciences.

[29]  D. Nocera,et al.  Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles. , 2011, Journal of the American Chemical Society.

[30]  J. Kuo,et al.  Structural trends of ionized water networks: Infrared spectroscopy of watercluster radical cations (H2O)n+ (n = 3–11) , 2011 .

[31]  Javier J. Concepcion,et al.  Nonaqueous catalytic water oxidation. , 2010, Journal of the American Chemical Society.

[32]  Matthew W Kanan,et al.  Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. , 2010, Journal of the American Chemical Society.

[33]  J. Bowman,et al.  Spectroscopic signatures of proton transfer dynamics in the water dimer cation. , 2010, The Journal of chemical physics.

[34]  Michael R. Norris,et al.  Surface catalysis of water oxidation by the blue ruthenium dimer. , 2010, Inorganic chemistry.

[35]  Andreas Stathopoulos,et al.  PRIMME: preconditioned iterative multimethod eigensolver—methods and software description , 2010, TOMS.

[36]  Christopher J. Chang,et al.  A molecular molybdenum-oxo catalyst for generating hydrogen from water , 2010, Nature.

[37]  Michael R. Norris,et al.  Catalytic water oxidation by single-site ruthenium catalysts. , 2010, Inorganic chemistry.

[38]  Andrew C. Simmonett,et al.  Water dimer radical cation: structures, vibrational frequencies, and energetics. , 2009, The journal of physical chemistry. A.

[39]  Z. Latajka,et al.  Car–Parrinello and path integral molecular dynamics study of the intramolecular hydrogen bond in the novel class of anionic H-chelates: 6-Nitro-2,3-dipyrrol-2-ylquinoxaline anion , 2009 .

[40]  James D. Blakemore,et al.  Highly active and robust Cp* iridium complexes for catalytic water oxidation. , 2009, Journal of the American Chemical Society.

[41]  P. Pieniazek,et al.  Degree of initial hole localization/delocalization in ionized water clusters. , 2009, The journal of physical chemistry. A.

[42]  Mark A. Johnson,et al.  Spectroscopic study of the ion-radical H-bond in H4O2+. , 2009, The journal of physical chemistry. A.

[43]  Daniel G. Nocera,et al.  A self-healing oxygen-evolving catalyst. , 2009, Journal of the American Chemical Society.

[44]  D. Marx,et al.  Quantum effects on vibrational and electronic spectra of hydrazine studied by "on-the-fly" ab initio ring polymer molecular dynamics. , 2009, The journal of physical chemistry. A.

[45]  C. Cooper,et al.  The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance , 2008, Journal of bioenergetics and biomembranes.

[46]  Matthew W. Kanan,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[47]  J. VandeVondele,et al.  Electronic structure of the water dimer cation. , 2008, The journal of physical chemistry. A.

[48]  R. Baer,et al.  A density functional theory for symmetric radical cations from bonding to dissociation. , 2008, The journal of physical chemistry. A.

[49]  Anna I Krylov,et al.  Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker's guide to Fock space. , 2008, Annual review of physical chemistry.

[50]  T. Meyer,et al.  Catalysis: The art of splitting water , 2008, Nature.

[51]  M. Shiga,et al.  Path integral molecular dynamics calculations of the H-6(+) and D-6(+) clusters on an ab initio potential energy surface , 2007 .

[52]  D. Lefer A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide , 2007, Proceedings of the National Academy of Sciences.

[53]  M. Parrinello,et al.  Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Yihan Shao,et al.  An improved algorithm for analytical gradient evaluation in resolution‐of‐the‐identity second‐order Møller‐Plesset perturbation theory: Application to alanine tetrapeptide conformational analysis , 2007, J. Comput. Chem..

[55]  T. Mukherjee,et al.  Structural investigation of asymmetrical dimer radical cation system (H2O-H2S)+: proton-transferred or hemi-bonded? , 2007, The journal of physical chemistry. A.

[56]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[57]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[58]  R. Needs,et al.  Quantum Monte Carlo calculations of the dissociation energies of three-electron hemibonded radical cationic dimers. , 2006, The Journal of chemical physics.

[59]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Martin Head-Gordon,et al.  Auxiliary basis expansions for large-scale electronic structure calculations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  O. Ogunseitan Biogeochemical Cycling of Phosphorus, Sulfur, Metals, and Trace Elements , 2004 .

[62]  M. Calandra,et al.  Density functional theory description of hole-trapping inSiO2: A self-interaction-corrected approach , 2004, cond-mat/0407750.

[63]  M. Shiga,et al.  Ab initio path integral study of isotope effect of hydronium ion , 2003 .

[64]  D. K. Maity Sigma Bonded Radical Cation Complexes: A Theoretical Study , 2002 .

[65]  M. Shiga,et al.  A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics , 2001 .

[66]  Donald G. Truhlar,et al.  Adiabatic connection for kinetics , 2000 .

[67]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[68]  E. Baerends,et al.  Ground State of the (H2O)2+ Radical Cation: DFT versus Post-Hartree−Fock Methods , 1999 .

[69]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[70]  Weitao Yang,et al.  A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons , 1998 .

[71]  Vincenzo Barone,et al.  Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models , 1998 .

[72]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[73]  G. Brasseur,et al.  A 3D model study of the global sulphur cycle : Contributions of anthropogenic and biogenic sources , 1996 .

[74]  Michele Parrinello,et al.  Efficient and general algorithms for path integral Car–Parrinello molecular dynamics , 1996 .

[75]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[76]  J. Bertrán,et al.  THEORETICAL STUDY OF THE IONIZATION OF THE H2S-H2S, PH3-H2S, AND CLH-H2S HYDROGEN BONDED MOLECULES , 1995 .

[77]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[78]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[79]  J. Bertrán,et al.  Theoretical Study of the Ionization of the H2O-H2O, NH3-H2O, and FH-H2O Hydrogen-Bonded Molecules , 1994 .

[80]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[81]  J. Bertrán,et al.  Ab initio study of the structure and reactivity of H2CO.cntdot.H2O.bul.+ and related radical cations , 1993 .

[82]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[83]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[84]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[85]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[86]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[87]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[88]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[89]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[90]  L. Radom,et al.  Structures and stabilities of singly charged three-electron hemibonded systems and their hydrogen-bonded isomers , 1988 .

[91]  T. Clark Odd-electron .sigma. bonds , 1988 .

[92]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[93]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[94]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[95]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[96]  K. Emrich,et al.  An extension of the coupled cluster formalism to excited states (I) , 1981 .

[97]  J. A. Barker A quantum‐statistical Monte Carlo method; path integrals with boundary conditions , 1979 .

[98]  R. Smith,et al.  Hydrogen sulfide poisoning. , 1979, Journal of occupational medicine. : official publication of the Industrial Medical Association.

[99]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[100]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[101]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[102]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[103]  N. Metropolis,et al.  The Monte Carlo method. , 1949, Journal of the American Statistical Association.

[104]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[105]  J. Barber Photosystem II: the water-splitting enzyme of photosynthesis. , 2012, Cold Spring Harbor symposia on quantitative biology.

[106]  Christof Vömel,et al.  ScaLAPACK's MRRR algorithm , 2010, TOMS.

[107]  F. Stewart,et al.  Symbiosis of thioautotrophic bacteria with Riftia pachyptila. , 2006, Progress in molecular and subcellular biology.

[108]  S. Overbury,et al.  Activated carbons for selective catalytic oxidation of hydrogen sulfide to sulfur , 2005 .

[109]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[110]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[111]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[112]  B. Meyer The Sulfur Cycles , 1977 .

[113]  David J Rowe,et al.  EQUATIONS-OF-MOTION METHOD AND THE EXTENDED SHELL MODEL. , 1968 .