Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions

When describing complex interconnected systems, one often has to go beyond the standard network description to account for generalized interactions. Here, we establish a unified framework to simplify the stability analysis of cluster synchronization patterns for a wide range of generalized networks, including hypergraphs, multilayer networks, and temporal networks. The framework is based on finding a simultaneous block diagonalization of the matrices encoding the synchronization pattern and the network topology. As an application, we use simultaneous block diagonalization to unveil an intriguing type of chimera states that appear only in the presence of higher-order interactions. The unified framework established here can be extended to other dynamical processes and can facilitate the discovery of emergent phenomena in complex systems with generalized interactions. Recent studies have shown that complex systems are often best represented by generalized networks such as hypergraphs, multilayer networks, and temporal networks. Here, the authors propose a unified framework to investigate cluster synchronization patterns in generalized networks and demonstrate the existence of chimera states that emerge exclusively in the presence of higher-order interactions.

[1]  Mathias Hudoba de Badyn,et al.  Exotic states in a simple network of nanoelectromechanical oscillators , 2019, Science.

[2]  Danielle S. Bassett,et al.  Two’s company, three (or more) is a simplex , 2016, Journal of Computational Neuroscience.

[3]  Adilson E. Motter,et al.  Identical synchronization of nonidentical oscillators: when only birds of different feathers flock together , 2017, 1712.03245.

[4]  Seungjin Choi Blind Source Separation and Independent Component Analysis : A Review , 2004 .

[5]  Adilson E. Motter,et al.  Critical Switching in Globally Attractive Chimeras , 2019 .

[6]  Eckehard Schöll,et al.  Cluster and group synchronization in delay-coupled networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[8]  Adilson E Motter,et al.  Stable Chimeras and Independently Synchronizable Clusters. , 2017, Physical review letters.

[9]  Attila Balint,et al.  Systematic analysis of complex genetic interactions , 2018, Science.

[10]  Leonie Neuhäuser,et al.  Multibody interactions and nonlinear consensus dynamics on networked systems. , 2019, Physical review. E.

[11]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[12]  Jure Leskovec,et al.  Motifs in Temporal Networks , 2016, WSDM.

[13]  O. Omel'chenko,et al.  The mathematics behind chimera states , 2018 .

[14]  Daniel B. Stouffer,et al.  Higher-order interactions capture unexplained complexity in diverse communities , 2017, Nature Ecology &Evolution.

[15]  Kazuo Murota,et al.  Algorithm for Error-Controlled Simultaneous Block-Diagonalization of Matrices , 2011, SIAM J. Matrix Anal. Appl..

[16]  Francesco Sorrentino,et al.  Cluster synchronization and isolated desynchronization in complex networks with symmetries , 2013, Nature Communications.

[17]  S. Strogatz Exploring complex networks , 2001, Nature.

[18]  Vito Latora,et al.  Collective Phenomena Emerging from the Interactions between Dynamical Processes in Multiplex Networks. , 2014, Physical review letters.

[19]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[20]  Sarika Jalan,et al.  Cluster Synchronization in Multiplex Networks , 2014 .

[21]  Eyal Bairey,et al.  High-order species interactions shape ecosystem diversity , 2016, Nature Communications.

[22]  Juan G. Restrepo,et al.  The effect of heterogeneity on hypergraph contagion models , 2020, Chaos.

[23]  Jean M. Vettel,et al.  Cliques and cavities in the human connectome , 2016, Journal of Computational Neuroscience.

[24]  Seth A. Myers,et al.  Spontaneous synchrony in power-grid networks , 2013, Nature Physics.

[25]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[26]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[27]  D. Abrams,et al.  Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators , 2014, 1403.6204.

[28]  Francesco Sorrentino,et al.  Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[30]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[31]  Alex Arenas,et al.  Abrupt phase transition of epidemic spreading in simplicial complexes , 2020 .

[32]  Timoteo Carletti,et al.  Random walks on hypergraphs , 2020, Physical review. E.

[33]  Stefano Allesina,et al.  Beyond pairwise mechanisms of species coexistence in complex communities , 2017, Nature.

[34]  Eckehard Schöll,et al.  Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. , 2013, Physical review letters.

[35]  Joos Vandewalle,et al.  Cluster synchronization in oscillatory networks. , 2008, Chaos.

[36]  Yoshihiro Kanno,et al.  A numerical algorithm for block-diagonal decomposition of matrix $${*}$$-algebras with application to semidefinite programming , 2010 .

[37]  Jon M. Kleinberg,et al.  Simplicial closure and higher-order link prediction , 2018, Proceedings of the National Academy of Sciences.

[38]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[39]  Jean-Gabriel Young,et al.  Networks beyond pairwise interactions: structure and dynamics , 2020, ArXiv.

[40]  Alberto Saa,et al.  Symmetries and synchronization in multilayer random networks. , 2017, Physical review. E.

[41]  Mattia Frasca,et al.  Intra-layer synchronization in multiplex networks , 2014, 1407.3283.

[42]  Vito Latora,et al.  Simplicial models of social contagion , 2018, Nature Communications.

[43]  Yamir Moreno,et al.  Social contagion models on hypergraphs , 2020, Physical Review Research.

[44]  L. V. Gambuzza,et al.  Stability of synchronization in simplicial complexes , 2021, Nature Communications.

[45]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[46]  Joseph D. Hart,et al.  Experiments with arbitrary networks in time-multiplexed delay systems. , 2017, Chaos.

[47]  Raissa M. D'Souza,et al.  Cluster synchronization on hypergraphs , 2021 .

[48]  F. Battiston,et al.  Multiorder Laplacian for synchronization in higher-order networks , 2020, Physical Review Research.

[49]  Forget Partitions: Cluster Synchronization in Directed Networks Generate Hierarchies , 2021, 2106.13220.

[50]  Adilson E. Motter,et al.  Symmetry-Independent Stability Analysis of Synchronization Patterns , 2020, SIAM Rev..

[51]  Steven H Strogatz,et al.  Designing temporal networks that synchronize under resource constraints , 2021, Nature communications.

[52]  R. Reinhart,et al.  Working memory revived in older adults by synchronizing rhythmic brain circuits , 2019, Nature Neuroscience.

[53]  Jure Leskovec,et al.  Higher-order organization of complex networks , 2016, Science.

[54]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[55]  Alain Barrat,et al.  Simplicial Activity Driven Model. , 2018, Physical review letters.

[56]  Wenlian Lu,et al.  Synchronization of Discrete-Time Dynamical Networks with Time-Varying Couplings , 2008, SIAM J. Math. Anal..

[57]  D. Pazó,et al.  Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation. , 2019, Physical review. E.

[58]  Ginestra Bianconi,et al.  Explosive higher-order Kuramoto dynamics on simplicial complexes , 2019, Physical review letters.

[59]  Adilson E Motter,et al.  Topological Control of Synchronization Patterns: Trading Symmetry for Stability. , 2019, Physical review letters.

[60]  R. E. Amritkar,et al.  Synchronized state of coupled dynamics on time-varying networks. , 2006, Chaos.

[61]  Christian Kuehn,et al.  Coupled dynamics on hypergraphs: Master stability of steady states and synchronization. , 2020, Physical review. E.

[62]  P. Ashwin,et al.  Chaos in generically coupled phase oscillator networks with nonpairwise interactions. , 2016, Chaos.

[63]  Y.-Y. Liu,et al.  The fundamental advantages of temporal networks , 2016, Science.

[64]  Alice Patania,et al.  The shape of collaborations , 2017, EPJ Data Science.

[65]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[67]  Igor Belykh,et al.  Synchronization in Multilayer Networks: When Good Links Go Bad , 2019, SIAM J. Appl. Dyn. Syst..

[68]  Austin R. Benson,et al.  Random Walks on Simplicial Complexes and the normalized Hodge Laplacian , 2018, SIAM Rev..

[69]  Per Sebastian Skardal,et al.  Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching , 2019 .

[70]  Liang Huang,et al.  Topological control of synchronous patterns in systems of networked chaotic oscillators , 2013 .

[71]  Frede Blaabjerg,et al.  Overview of Control and Grid Synchronization for Distributed Power Generation Systems , 2006, IEEE Transactions on Industrial Electronics.

[72]  Eckehard Schöll,et al.  Control of synchronization patterns in neural-like Boolean networks. , 2012, Physical review letters.

[73]  Kazuo Murota,et al.  Computational Use of Group Theory in Bifurcation Analysis of Symmetric Structures , 1991, SIAM J. Sci. Comput..

[74]  Andrzej Krawiecki Chaotic synchronization on complex hypergraphs , 2014 .

[75]  Ginestra Bianconi,et al.  Percolation in multiplex networks with overlap. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Timoteo Carletti,et al.  Dynamical systems on hypergraphs , 2020, Journal of Physics: Complexity.

[77]  Vito Latora,et al.  Remote synchronization reveals network symmetries and functional modules. , 2012, Physical review letters.

[78]  Yamir Moreno,et al.  Phase transitions and stability of dynamical processes on hypergraphs , 2020, Communications Physics.

[79]  Ernesto Estrada,et al.  Centralities in Simplicial Complexes , 2017, Journal of theoretical biology.

[80]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[81]  D. Long Networks of the Brain , 2011 .

[82]  M Chavez,et al.  Synchronization in dynamical networks: evolution along commutative graphs. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[84]  Yamir Moreno,et al.  Multilayer Networks in a Nutshell , 2018, Annual Review of Condensed Matter Physics.

[85]  Henry Markram,et al.  Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function , 2016, Front. Comput. Neurosci..

[86]  Jean-François Cardoso,et al.  Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[87]  Márton Pósfai,et al.  Structural controllability of temporal networks , 2014 .

[88]  Robert Spalek The Multiplicative Quantum Adversary , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[89]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[90]  Louis Pecora,et al.  Symmetries and cluster synchronization in multilayer networks , 2020, Nature Communications.

[91]  Takuma Tanaka,et al.  Multistable attractors in a network of phase oscillators with three-body interactions. , 2011, Physical review letters.

[92]  Adilson E. Motter,et al.  Spontaneous synchrony in powergrid networks , 2013 .

[93]  Tina Manzhu Kang,et al.  Prevalence and patterns of higher-order drug interactions in Escherichia coli , 2018, npj Systems Biology and Applications.

[94]  Filippo Radicchi,et al.  Optimal percolation on multiplex networks , 2017, Nature Communications.

[95]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[96]  A. Arenas,et al.  Abrupt Desynchronization and Extensive Multistability in Globally Coupled Oscillator Simplexes. , 2019, Physical review letters.

[97]  Igor Belykh,et al.  Synchronization in On-Off Stochastic Networks: Windows of Opportunity , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.