Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase.

[1]  V. Chupin,et al.  2H-nuclear magnetic resonance investigations on phospholipid acyl chain order and dynamics in the gramicidin-induced hexagonal HII phase. , 1987, Biophysical journal.

[2]  J. Killian,et al.  Phase separation and hexagonal HII phase formation by gramicidins A, B and C in dioleoylphosphatidylcholine model membranes. A study on the role of the tryptophan residues. , 1987, Biochimica et biophysica acta.

[3]  R. Brasseur,et al.  Conformation and mode of organization of amphiphilic membrane components: a conformational analysis. , 1986, The Biochemical journal.

[4]  J. Killian,et al.  The influence of proteins and peptides on the phase properties of lipids. , 1986, Chemistry and physics of lipids.

[5]  J. Killian,et al.  Gramicidin-induced hexagonal HII phase formation in negatively charged phospholipids and the effect of N- and C-terminal modification of gramicidin on its interaction with zwitterionic phospholipids. , 1986, Biochimica et biophysica acta.

[6]  J. Killian,et al.  Orientation of gramicidin A at the lysophosphatidylcholine / water interface: a semi-empirical conformational analysis , 1986 .

[7]  J. Killian,et al.  Comparative 2H- and 31P-NMR study on the properties of palmitoyllysophosphatidylcholine in bilayers with gramicidin, cholesterol and dipalmitoylphosphatidylcholine. , 1986, Biochimica et biophysica acta.

[8]  J. Killian,et al.  Thermodynamic, motional, and structural aspects of gramicidin-induced hexagonal HII phase formation in phosphatidylethanolamine. , 1985, Biochemistry.

[9]  J. Killian,et al.  Importance of hydration for gramicidin-induced hexagonal HII phase formation in dioleoylphosphatidylcholine model membranes. , 1985, Biochemistry.

[10]  J. Killian,et al.  The tryptophans of gramicidin are essential for the lipid structure modulating effect of the peptide. , 1985, Biochimica et biophysica acta.

[11]  D. Busath,et al.  Photolysis of gramicidin A channels in lipid bilayers , 1983 .

[12]  C. Venkatachalam,et al.  Theoretical conformational analysis of the Gramicidin a transmembrane channel. I. Helix sense and energetics of head‐to‐head dimerization , 1983 .

[13]  J. Killian,et al.  Mixtures of gramicidin and lysophosphatidylcholine form lamellar structures. , 1983, Biochimica et biophysica acta.

[14]  A. Spisni,et al.  Supramolecular organization of lysophosphatidylcholine-packaged Gramicidin A. , 1983, Biochimica et biophysica acta.

[15]  A. Spisni,et al.  Gramicidin a induces lysolecithin to form bilayers , 1983, Bioscience reports.

[16]  A. Verkleij,et al.  Gramicidin induces the formation of non-bilayer structures in phosphatidylcholine dispersions in a fatty acid chain length dependent way , 1982 .

[17]  V. Ivanov,et al.  Comparison of the effect of linear gramicidin analogues on bacterial sporulation, membrane permeability, and ribonucleic acid polymerase. , 1979, Biochemistry.