Metallogels from Coordination Complexes, Organometallic, and Coordination Polymers.

A supramolecular gel results from the immobilization of solvent molecules on a 3D network of gelator molecules stabilized by various supramolecular interactions that include hydrogen bonding, π-π stacking, van der Waals interactions, and halogen bonding. In a metallogel, a metal is a part of the gel network as a coordinated metal ion (in a discrete coordination complex), as a cross-linking metal node with a multitopic ligand (in coordination polymer), and as metal nanoparticles adhered to the gel network. Although the field is relatively new, research into metallogels has experienced a considerable upsurge owing to its fundamental importance in supramolecular chemistry and various potential applications. This focus review aims to provide an insight into the development of designing metallogelators. Because of the limited scope, discussions are confined to examples pertaining to metallogelators derived from discrete coordination complexes, organometallic gelators, and coordination polymers. This review is expected to enlighten readers on the current development of designing metallogelators of the abovementioned class of molecules.

[1]  A. Ajayaghosh,et al.  The Chemistry and Applications of π-Gels , 2016 .

[2]  Jie Zhou,et al.  Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials , 2015, Chemical reviews.

[3]  G. Lloyd,et al.  Supramolecular gels in crystal engineering , 2015 .

[4]  A. Ajayaghosh,et al.  Pyridyl-Amides as a Multimode Self-Assembly Driver for the Design of a Stimuli-Responsive π-Gelator. , 2015, Chemistry, an Asian journal.

[5]  Christopher D. Jones,et al.  Supramolecular Gel Control of Cisplatin Crystallization: Identification of a New Solvate Form Using a Cisplatin-Mimetic Gelator , 2015 .

[6]  J. Hao,et al.  Hydrogels Triggered by Metal Ions as Precursors of Network CuS for DNA Detection. , 2015, Chemistry.

[7]  A. Husain,et al.  Metallogels and Silver Nanoparticles Generated from a Series of Transition Metal-Based Coordination Polymers Derived from a New Bis-pyridyl-bis-amide Ligand and Various Carboxylates , 2015 .

[8]  T. Tu,et al.  The electronic effects of ligands on metal-coordination geometry: a key role in the visual discrimination of dimethylaminopyridine and its application towards chemo-switch. , 2015, Chemical communications.

[9]  A. Ajayaghosh,et al.  Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels. , 2015, Chemical record.

[10]  You‐Ming Zhang,et al.  A novel supramolecular metallogel-based high-resolution anion sensor array. , 2015, Chemical communications.

[11]  A. Ajayaghosh,et al.  Organic donor-acceptor assemblies form coaxial p-n heterojunctions with high photoconductivity. , 2015, Angewandte Chemie.

[12]  P. Dastidar,et al.  Metallogels derived from silver coordination polymers of C3-symmetric tris(pyridylamide) tripodal ligands: synthesis of Ag nanoparticles and catalysis. , 2015, Chemistry.

[13]  Liming Tang,et al.  Metallogel template fabrication of pH-responsive copolymer nanowires loaded with silver nanoparticles and their photocatalytic degradation of methylene blue. , 2014, Chemistry, an Asian journal.

[14]  S. Bhattacharya,et al.  Pyridylenevinylene based Cu(2+)-specific, injectable metallo(hydro)gel: thixotropy and nanoscale metal-organic particles. , 2014, Chemical communications.

[15]  Bing Xu,et al.  Supramolecular hydrogels made of basic biological building blocks. , 2014, Chemistry, an Asian journal.

[16]  T. Pal,et al.  Redox-switchable copper(I) metallogel: a metal-organic material for selective and naked-eye sensing of picric acid. , 2014, ACS applied materials & interfaces.

[17]  A. McNeil,et al.  Improving Hg-triggered gelation via structural modifications. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[18]  K. Rissanen,et al.  Nanomolar pyrophosphate detection in water and in a self-assembled hydrogel of a simple terpyridine-Zn2+ complex. , 2014, Journal of the American Chemical Society.

[19]  G. Fernandez,et al.  Selbstorganisation und Bildung von (Hydro-)Gelen durch kooperative π-π-Wechselwirkungen und unkonventionelle C-H⋅⋅⋅X-Wasserstoffbrücken† , 2014 .

[20]  Gustavo Fernández,et al.  Self-assembly and (hydro)gelation triggered by cooperative π-π and unconventional C-H···X hydrogen bonding interactions. , 2014, Angewandte Chemie.

[21]  A. Ajayaghosh,et al.  Functional π-gelators and their applications. , 2014, Chemical reviews.

[22]  Nicola Armaroli,et al.  Weißlichtemittierende supramolekulare Gele , 2014 .

[23]  N. Armaroli,et al.  White-light-emitting supramolecular gels. , 2014, Angewandte Chemie.

[24]  J. Boilot,et al.  Photoactive hybrid gelators based on a luminescent inorganic [Cu4I4] cluster core. , 2013, Chemistry.

[25]  P. Das,et al.  CHAPTER 8:Molecular Gels as Templates for Nanostructured Materials , 2013 .

[26]  R. Banerjee,et al.  Proton-conducting supramolecular metallogels from the lowest molecular weight assembler ligand: a quote for simplicity. , 2013, Chemistry.

[27]  H. Ågren,et al.  Chirality control for in situ preparation of gold nanoparticle superstructures directed by a coordinatable organogelator. , 2013, Journal of the American Chemical Society.

[28]  C. Su,et al.  Metal-organic gels: From discrete metallogelators to coordination polymers , 2013 .

[29]  V. Yam,et al.  Recent advances in metallogels. , 2013, Chemical Society reviews.

[30]  G. John,et al.  Coordination polymer gels with important environmental and biological applications. , 2013, Chemical Society reviews.

[31]  P. Dastidar,et al.  Supramolecular chirality in organo-, hydro-, and metallogels derived from bis-amides of L-(+)-tartaric acid: formation of highly aligned 1D silica fibers and evidence of 5-c net SnS topology in a metallogel network. , 2012, Chemistry.

[32]  P. Duan,et al.  Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic L-glutamide. , 2012, Chemical communications.

[33]  J. Chen,et al.  Detecting a peroxide-based explosive via molecular gelation. , 2012, Chemical communications.

[34]  S. Batten,et al.  Instantaneous gelation of a new copper(II) metallogel amenable to encapsulation of a luminescent lanthanide cluster. , 2012, Chemical communications.

[35]  Sampath Srinivasan,et al.  Attogram sensing of trinitrotoluene with a self-assembled molecular gelator. , 2012, Journal of the American Chemical Society.

[36]  K. Biradha,et al.  Chemical and Mechano Responsive Metal–Organic Gels of Bis(benzimidazole)-Based Ligands with Cd(II) and Cu(II) Halide Salts: Self Sustainability and Gas and Dye Sorptions , 2012 .

[37]  Sukumaran Santhosh Babu,et al.  Selbstorganisierte Gelbildner für die organische Elektronik , 2012 .

[38]  Ayyappanpillai Ajayaghosh,et al.  Self-assembled gelators for organic electronics. , 2012, Angewandte Chemie.

[39]  Masato Ikeda,et al.  A supramolecular hydrogel containing boronic acid-appended receptor for fluorocolorimetric sensing of polyols with a paper platform. , 2012, Chemical communications.

[40]  Shih‐Sheng Sun,et al.  Synthesis and photophysical properties of self-assembled metallogels of platinum(II) acetylide complexes with elaborate long-chain pyridine-2,6-dicarboxamides. , 2012, Chemistry.

[41]  R. Bachman,et al.  General approach to low-molecular-weight metallogelators via the coordination-induced gelation of an L-glutamate-based lipid. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[42]  T. Tu,et al.  Visual chiral recognition through enantioselective metallogel collapsing: synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators. , 2011, Angewandte Chemie.

[43]  Lixin Wu,et al.  Synthesis, characterization, and the photochromic, luminescence, metallogelation and liquid-crystalline properties of multifunctional platinum(II) bipyridine complexes. , 2011, Chemistry.

[44]  Dennis Kuehbeck,et al.  Stimuli-responsive gels as reaction vessels and reusable catalysts. , 2011, Chemical Society reviews.

[45]  V. Puranik,et al.  Ferrocene based organometallic gelators: a supramolecular synthon approach , 2011 .

[46]  G. John,et al.  Pyridine-based coordination polymeric hydrogel with Cu2+ ion and its encapsulation of a hydrophobic molecule. , 2011, Chemical communications.

[47]  P. Dastidar,et al.  A New Series of ZnII Coordination Polymer Based Metallogels Derived from Bis-pyridyl-bis-amide Ligands: A Crystal Engineering Approach , 2011 .

[48]  U. Maitra,et al.  A self-assembled, luminescent europium cholate hydrogel: a novel approach towards lanthanide sensitization. , 2010, Chemical communications.

[49]  P. Dastidar,et al.  Is a crystal engineering approach useful in designing metallogels? A case study , 2010 .

[50]  Yun Yan,et al.  Unique temperature-dependent supramolecular self-assembly: from hierarchical 1D nanostructures to super hydrogel. , 2010, The journal of physical chemistry. B.

[51]  Z. Bian,et al.  Stereoselective and hierarchical self-assembly from nanotubular homochiral helical coordination polymers to supramolecular gels. , 2010, Chemical communications.

[52]  Zeng Huang,et al.  Enantioselective gel collapsing: a new means of visual chiral sensing. , 2010, Journal of the American Chemical Society.

[53]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[54]  Piero Baglioni,et al.  New frontiers in materials science for art conservation: responsive gels and beyond. , 2010, Accounts of chemical research.

[55]  Sudip Kumar Batabyal,et al.  Fluorescent coordination polymeric gel from tartaric acid-assisted self-assembly. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[56]  C. Su,et al.  Dynamic functionalised metallogel: An approach to immobilised catalysis with improved activity , 2010 .

[57]  A. Colin,et al.  Multifunctional gels from polymeric spin-crossover metallo-gelators. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[58]  M. Rogers,et al.  A molecular insight into the nature of crystallographic mismatches in self-assembled fibrillar networks under non-isothermal crystallization conditions , 2010 .

[59]  Jiang Zhou,et al.  Metal-driven hierarchical self-assembled one-dimensional nanohelices. , 2009, Nano letters.

[60]  Piero Baglioni,et al.  Nanoscience for art conservation: oil-in-water microemulsions embedded in a polymeric network for the cleaning of works of art. , 2009, Angewandte Chemie.

[61]  Boris Rybtchinski,et al.  Supramolecular gel based on a perylene diimide dye: multiple stimuli responsiveness, robustness, and photofunction. , 2009, Journal of the American Chemical Society.

[62]  T. Pradeep,et al.  Probing the initial stages of molecular organization of oligo(p-phenylenevinylene) assemblies with monolayer protected gold nanoparticles. , 2009, Chemistry, an Asian journal.

[63]  V. Yam,et al.  Influence of counteranion on the chiral supramolecular assembly of alkynylplatinum(II) terpyridyl metallogels that are stabilised by Pt...Pt and pi-pi interactions. , 2009, Chemistry.

[64]  V. Yam,et al.  Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2'-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures. , 2009, Journal of the American Chemical Society.

[65]  J. Steed,et al.  Metal ion and anion-based "tuning" of a supramolecular metallogel. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[66]  P. Dastidar Supramolecular gelling agents: can they be designed? , 2008, Chemical Society reviews.

[67]  Asish Pal,et al.  Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles. , 2008, Chemistry.

[68]  P. Dastidar,et al.  An easy access to an organometallic low molecular weight gelator: a crystal engineering approach , 2008 .

[69]  A. Ajayaghosh,et al.  Organogels as scaffolds for excitation energy transfer and light harvesting. , 2008, Chemical Society reviews.

[70]  Sungho Yoon,et al.  Gels from mixed ligand silver(I) carboxylates: a promising approach for gel formation utilizing surface modifications. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[71]  Bing Xu,et al.  A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. , 2007, Angewandte Chemie.

[72]  Guoxin Wang,et al.  Luminescent metallogels of platinum(II) terpyridyl complexes: interplay of metal...metal, pi-pi and hydrophobic-hydrophobic interactions on gel formation. , 2007, Chemical communications.

[73]  M. C. Feiters,et al.  A tailored organometallic gelator with enhanced amphiphilic character and structural diversity of gelation. , 2007, Chemical communications.

[74]  R. Ziessel,et al.  Formation of Gels and Liquid Crystals Induced by Pt⋅⋅⋅Pt and π–π* Interactions in Luminescent σ‐Alkynyl Platinum(II) Terpyridine Complexes , 2006 .

[75]  S. Rowan,et al.  Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. , 2006, Journal of the American Chemical Society.

[76]  S. Zalzal,et al.  A New Class of Selective Low-Molecular-Weight Gelators Based on Salts of Diaminotriazinecarboxylic Acids , 2006 .

[77]  R. Weiss,et al.  Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. , 2006, Accounts of chemical research.

[78]  F. Fages Metal coordination to assist molecular gelation. , 2006, Angewandte Chemie.

[79]  Frédéric Fages Durch Metallkoordination zu molekularen Gelen , 2006 .

[80]  Neralagatta M Sangeetha,et al.  Supramolecular gels: functions and uses. , 2005, Chemical Society reviews.

[81]  Ho-Joong Kim,et al.  Stimuli-responsive gels from reversible coordination polymers. , 2005, Angewandte Chemie.

[82]  S. Shinkai,et al.  Organogel of an 8-quinolinol platinum(II) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching. , 2005, Chemical communications.

[83]  Amitava Das,et al.  First snapshot of a nonpolymeric hydrogelator interacting with its gelling solvents. , 2005, Chemical communications.

[84]  Amitava Das,et al.  Nonpolymeric hydrogelators derived from trimesic amides , 2004 .

[85]  A. Heeres,et al.  Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. , 2004, Angewandte Chemie.

[86]  A. Hamilton,et al.  Water gelation by small organic molecules. , 2004, Chemical Reviews.

[87]  R. Weiss,et al.  Low Molecular-Mass Gelators with Diyne Functional Groups and Their Unpolymerized and Polymerized Gel Assemblies , 2003 .

[88]  M. C. Feiters,et al.  A metal-carbene carbohydrate amphiphile as a low-molecular-mass organometallic gelator. , 2003, Angewandte Chemie.

[89]  K. H. Dötz,et al.  Ein Metallcarben-Kohlenhydrat-Amphiphil als niedermolekularer metallorganischer Gelbildner† , 2003 .

[90]  W. Tan,et al.  Creating new supramolecular materials by architecture of three-dimensional nanocrystal fiber networks. , 2002, Journal of the American Chemical Society.

[91]  O. Gronwald,et al.  Gelators for organic liquids based on self-assembly: A new facet of supramolecular and combinatorial chemistry , 2002 .

[92]  Bing Xu,et al.  A stable metal coordination polymer gel based on a calix[4]arene and its 'uptake' of non-ionic organic molecules from the aqueous phase. , 2002, Chemical communications.

[93]  A. Wynne,et al.  An effective, cosmetically acceptable, novel hydro-gel emollient for the management of dry skin conditions , 2002, The Journal of dermatological treatment.

[94]  M. Ikeda,et al.  [60]Fullerene Can Reinforce the Organogel Structure of Porphyrin-Appended Cholesterol Derivatives: Novel Odd−Even Effect of the (CH2)n Spacer on the Organogel Stability , 2001 .

[95]  D. López,et al.  Behavior of a Self-Assembling Bicopper Complex in Organic Solutions , 2001 .

[96]  D. Reinhoudt,et al.  An attempt to predict the gelation ability of hydrogen-bond-based gelators utilizing a glycoside library , 2000 .

[97]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[98]  G. Gebel,et al.  Molecular Rods in a Zinc(II) Porphyrin/Cyclohexane Physical Gel: Neutron and X-ray Scattering Characterizations , 1996 .

[99]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[100]  Gautam R. Desiraju Supramolekulare Synthone für das Kristall‐Engineering ‐ eine neue organische Synthese , 1995 .

[101]  P. Maldivi,et al.  Living polymers in organic solvents , 1992 .

[102]  H. Sobotka,et al.  The gelation of bile salt solutions , 1958 .

[103]  S. Schryver Investigations Dealing with the Phenomena of Clot Formations. Part III.--Further Investigations of the Cholate Gel , 1916 .

[104]  S. Schryver Investigations Dealing with the Phenomena of "Clot" Formations. Part II.-The Formation of a Gel from Cholate Solutions having Many Properties Analogous to those of Cell Membranes , 1914 .

[105]  A. Ajayaghosh,et al.  Supramolecular gels and functional materials research in India. , 2013, Chimia.

[106]  P. Vemula,et al.  In Situ Synthesis of Gold Nanoparticles Using Molecular Gels and Liquid Crystals from Vitamin-C Amphiphiles , 2007 .

[107]  A. Lipowitz,et al.  Versuche und Resultate ber die Lslichkeit der Harnsure , 1841 .