Prediction and characterization of influenza virus polymerase inhibitors through blind docking and ligand based virtual screening

[1]  Horacio Pérez-Sánchez,et al.  MCC950 closes the active conformation of NLRP3 to an inactive state , 2019, Nature Chemical Biology.

[2]  Jie Zhou,et al.  Inhibitors of Influenza A Virus Polymerase. , 2018, ACS infectious diseases.

[3]  T. Noda,et al.  Influenza C and D Viruses Package Eight Organized Ribonucleoprotein Complexes , 2018, Journal of Virology.

[4]  Zheng Zhu,et al.  Structure‐based discovery of clinically approved drugs as Zika virus NS2B‐NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo , 2017, Antiviral research.

[5]  M. Veit,et al.  Novel Influenza D virus: Epidemiology, pathology, evolution and biological characteristics , 2017, Virulence.

[6]  Jie Zhou,et al.  Identification of a novel small-molecule compound targeting the influenza A virus polymerase PB1-PB2 interface , 2016, Antiviral Research.

[7]  Jie Zhou,et al.  A novel small-molecule compound disrupts influenza A virus PB2 cap-binding and inhibits viral replication. , 2016, The Journal of antimicrobial chemotherapy.

[8]  Jie Zhou,et al.  A novel small-molecule inhibitor of influenza A virus acts by suppressing PA endonuclease activity of the viral polymerase , 2016, Scientific Reports.

[9]  D. Stuart,et al.  Crystal structure of the RNA-dependent RNA polymerase from influenza C virus , 2015, Nature.

[10]  Stephani Joy Y Macalino,et al.  Role of computer-aided drug design in modern drug discovery , 2015, Archives of Pharmacal Research.

[11]  G. Neumann,et al.  At the centre: influenza A virus ribonucleoproteins , 2014, Nature Reviews Microbiology.

[12]  Stefan Reich,et al.  Structural insight into cap-snatching and RNA synthesis by influenza polymerase , 2014, Nature.

[13]  Jun Xu,et al.  Scaffold hopping of potential anti-tumor agents by WEGA: a shape-based approach , 2014 .

[14]  Yuna Sun,et al.  Current progress in antiviral strategies , 2014, Trends in Pharmacological Sciences.

[15]  Aeron C. Hurt,et al.  The Ongoing Battle Against Influenza: Drug-resistant influenza viruses: why fitness matters , 2012, Nature Medicine.

[16]  W. Wenzel,et al.  In silico discovery of a compound with nanomolar affinity to antithrombin causing partial activation and increased heparin affinity. , 2012, Journal of medicinal chemistry.

[17]  David Ryan Koes,et al.  ZINCPharmer: pharmacophore search of the ZINC database , 2012, Nucleic Acids Res..

[18]  L. Kakkola,et al.  Emerging cellular targets for influenza antiviral agents. , 2012, Trends in pharmacological sciences.

[19]  M. Ison Antivirals and resistance: influenza virus. , 2011, Current opinion in virology.

[20]  P. Torgerson,et al.  Oxford Textbook of Zoonoses: Biology, Clinical Practice, and Public Health Control , 2011 .

[21]  James M Aramini,et al.  Structures of influenza A proteins and insights into antiviral drug targets , 2010, Nature Structural &Molecular Biology.

[22]  Irene T. Weber,et al.  HIV-1 Protease: Structural Perspectives on Drug Resistance , 2009, Viruses.

[23]  E. Obayashi,et al.  Structural insight into the essential PB1–PB2 subunit contact of the influenza virus RNA polymerase , 2009, The EMBO journal.

[24]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[25]  Fedor N. Novikov,et al.  Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. , 2008, Journal of chemical information and modeling.

[26]  A. Joachimiak,et al.  Crystal structure of the polymerase PAC–PB1N complex from an avian influenza H5N1 virus , 2008, Nature.

[27]  E. Obayashi,et al.  The structural basis for an essential subunit interaction in influenza virus RNA polymerase , 2008, Nature.

[28]  F. Antunes,et al.  Emergence of Drug Resistance Mutations in Human Immunodeficiency Virus Type 2-Infected Subjects Undergoing Antiretroviral Therapy , 2000, Journal of Clinical Microbiology.

[29]  Jun Xu,et al.  GMA: A Generic Match Algorithm for Structural Homomorphism, Isomorphism, and Maximal Common Substructure Match and Its Applications , 1996, J. Chem. Inf. Comput. Sci..

[30]  Jie Zhou,et al.  Identification of a small-molecule inhibitor of influenza virus via disrupting the subunits interaction of the viral polymerase. , 2016, Antiviral research.

[31]  F. Hayden,et al.  Emerging influenza antiviral resistance threats. , 2011, The Journal of infectious diseases.

[32]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[33]  Thierry Langer,et al.  LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters , 2005, J. Chem. Inf. Model..

[34]  Ten things you need to know about pandemic influenza (update of 14 October 2005). , 2005, Releve epidemiologique hebdomadaire.