Remarks on the convexity of free boundaries (Scalar and system cases)

<p>Convexity is discussed for several free boundary value problems in exterior domains that are generally formulated as <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta u equals f left-parenthesis u right-parenthesis in normal upper Omega minus upper D comma StartAbsoluteValue nabla u EndAbsoluteValue equals g on partial-differential normal upper Omega comma u greater-than-or-equal-to 0 in double-struck upper R Superscript n Baseline comma"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mtext> </mml:mtext> <mml:mtext>in </mml:mtext> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo class="MJX-variant">∖<!-- ∖ --></mml:mo> <mml:mi>D</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="1em" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> <mml:mtext> </mml:mtext> <mml:mtext> on </mml:mtext> <mml:mtext> </mml:mtext> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="1em" /> <mml:mi>u</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>0</mml:mn> <mml:mtext> </mml:mtext> <mml:mtext> in </mml:mtext> <mml:mtext> </mml:mtext> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*} \Delta u = f(u) \ \text {in } \Omega \setminus D, \quad |\nabla u | = g \ \text { on } \ \partial \Omega , \quad u\geq 0 \ \text { in } \ \mathbb {R}^n, \end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is assumed to be continuous in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega equals left-brace u greater-than 0 right-brace"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo>=</mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>u</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\Omega = \{u > 0\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (is unknown), <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u equals 1"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">u=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="partial-differential upper D"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi>D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\partial D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a bounded domain in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>). Here <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g equals g left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g= g(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a given smooth function that is either strictly positive (Bernoulli-type) or identically zero (obstacle type). Properties for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> will be spelled out in exact terms in the text.</p> <p>The interest is in the particular case where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is star-shaped or convex. The focus is on the case where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis u right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(u)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> lacks monotonicity, so that the recently developed tool of quasiconvex rearrangement is not applicable directly. Nevertheless, such quasiconvexity is used in a slightly different manner, and in combination with scaling and asymptotic expansion of solutions at regular points. The latter heavily relies on the regularity theory of free boundaries.</p> <p>Also, convexity for several systems of equations in a general framework is discussed, and some ideas along with several open problems are presented.</p>

[1]  C. Trombetti,et al.  On the stability of the Serrin problem , 2008 .

[2]  H. Alt,et al.  A free boundary problem for semilinear elliptic equations. , 1986 .

[3]  Equilibrium points of a singular cooperative system with free boundary , 2013, 1309.2624.

[4]  H. Shahgholian,et al.  A discrete bernoulli free boundary problem , 2012, 1204.6578.

[5]  L. Caffarelli,et al.  A minimization problem with free boundary related to a cooperative system , 2016, Duke Mathematical Journal.

[6]  Björn Gustafsson,et al.  Existence and geometric properties of solutions of a free boundary problem in potential theory. , 1995 .

[7]  Enrico Valdinoci,et al.  Flattening Results for Elliptic PDEs in Unbounded Domains with Applications to Overdetermined Problems , 2010 .

[8]  John M. Ball,et al.  Regularity of quasiconvex envelopes , 2000 .

[9]  Rolando Magnanini,et al.  Matzoh ball soup: Heat conductors with a stationary isothermic surface , 2002 .

[10]  Stationary isothermic surfaces for unbounded domains , 2007 .

[11]  L. Caffarelli,et al.  Existence and regularity for a minimum problem with free boundary. , 1981 .

[12]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[13]  A convexity problem for a semi-linear PDE , 2019, Applicable Analysis.

[14]  Hans F. Weinberger,et al.  Remark on the preceding paper of Serrin , 1971 .

[15]  Nicholas J. Korevaar Convex solutions to nonlinear elliptic and parabolic boundary value problems , 1981 .

[16]  Avner Friedman,et al.  The free boundary of a semilinear elliptic equation , 1984 .

[17]  On the convexity of some free boundaries , 2009 .

[18]  John L. Lewis Capacitary functions in convex rings , 1977 .

[19]  Henrik Shahgholian,et al.  Diversifications of Serrin's and related symmetry problems , 2012 .

[20]  Rolando Magnanini,et al.  Nonlinear diffusion with a bounded stationary level surface , 2009, 0902.1929.