<p>Convexity is discussed for several free boundary value problems in exterior domains that are generally formulated as <disp-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta u equals f left-parenthesis u right-parenthesis in normal upper Omega minus upper D comma StartAbsoluteValue nabla u EndAbsoluteValue equals g on partial-differential normal upper Omega comma u greater-than-or-equal-to 0 in double-struck upper R Superscript n Baseline comma">
<mml:semantics>
<mml:mrow>
<mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>f</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mtext> </mml:mtext>
<mml:mtext>in </mml:mtext>
<mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi>
<mml:mo class="MJX-variant">∖<!-- ∖ --></mml:mo>
<mml:mi>D</mml:mi>
<mml:mo>,</mml:mo>
<mml:mspace width="1em" />
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mo stretchy="false">|</mml:mo>
</mml:mrow>
<mml:mi mathvariant="normal">∇<!-- ∇ --></mml:mi>
<mml:mi>u</mml:mi>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mo stretchy="false">|</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mi>g</mml:mi>
<mml:mtext> </mml:mtext>
<mml:mtext> on </mml:mtext>
<mml:mtext> </mml:mtext>
<mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi>
<mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi>
<mml:mo>,</mml:mo>
<mml:mspace width="1em" />
<mml:mi>u</mml:mi>
<mml:mo>≥<!-- ≥ --></mml:mo>
<mml:mn>0</mml:mn>
<mml:mtext> </mml:mtext>
<mml:mtext> in </mml:mtext>
<mml:mtext> </mml:mtext>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">R</mml:mi>
</mml:mrow>
<mml:mi>n</mml:mi>
</mml:msup>
<mml:mo>,</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\begin{equation*} \Delta u = f(u) \ \text {in } \Omega \setminus D, \quad |\nabla u | = g \ \text { on } \ \partial \Omega , \quad u\geq 0 \ \text { in } \ \mathbb {R}^n, \end{equation*}</mml:annotation>
</mml:semantics>
</mml:math>
</disp-formula>
where <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u">
<mml:semantics>
<mml:mi>u</mml:mi>
<mml:annotation encoding="application/x-tex">u</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> is assumed to be continuous in <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n">
<mml:semantics>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">R</mml:mi>
</mml:mrow>
<mml:mi>n</mml:mi>
</mml:msup>
<mml:annotation encoding="application/x-tex">\mathbb {R}^n</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>, <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega equals left-brace u greater-than 0 right-brace">
<mml:semantics>
<mml:mrow>
<mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi>
<mml:mo>=</mml:mo>
<mml:mo fence="false" stretchy="false">{</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>0</mml:mn>
<mml:mo fence="false" stretchy="false">}</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\Omega = \{u > 0\}</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> (is unknown), <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u equals 1">
<mml:semantics>
<mml:mrow>
<mml:mi>u</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">u=1</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> on <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="partial-differential upper D">
<mml:semantics>
<mml:mrow>
<mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi>
<mml:mi>D</mml:mi>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\partial D</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>, and <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D">
<mml:semantics>
<mml:mi>D</mml:mi>
<mml:annotation encoding="application/x-tex">D</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> is a bounded domain in <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n">
<mml:semantics>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">R</mml:mi>
</mml:mrow>
<mml:mi>n</mml:mi>
</mml:msup>
<mml:annotation encoding="application/x-tex">\mathbb {R}^n</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> (<inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 2">
<mml:semantics>
<mml:mrow>
<mml:mi>n</mml:mi>
<mml:mo>≥<!-- ≥ --></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">n\geq 2</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>). Here <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g equals g left-parenthesis x right-parenthesis">
<mml:semantics>
<mml:mrow>
<mml:mi>g</mml:mi>
<mml:mo>=</mml:mo>
<mml:mi>g</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>x</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">g= g(x)</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> is a given smooth function that is either strictly positive (Bernoulli-type) or identically zero (obstacle type). Properties for <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f">
<mml:semantics>
<mml:mi>f</mml:mi>
<mml:annotation encoding="application/x-tex">f</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> will be spelled out in exact terms in the text.</p>
<p>The interest is in the particular case where <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D">
<mml:semantics>
<mml:mi>D</mml:mi>
<mml:annotation encoding="application/x-tex">D</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> is star-shaped or convex. The focus is on the case where <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis u right-parenthesis">
<mml:semantics>
<mml:mrow>
<mml:mi>f</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>u</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:annotation encoding="application/x-tex">f(u)</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> lacks monotonicity, so that the recently developed tool of quasiconvex rearrangement is not applicable directly. Nevertheless, such quasiconvexity is used in a slightly different manner, and in combination with scaling and asymptotic expansion of solutions at regular points. The latter heavily relies on the regularity theory of free boundaries.</p>
<p>Also, convexity for several systems of equations in a general framework is discussed, and some ideas along with several open problems are presented.</p>
[1]
C. Trombetti,et al.
On the stability of the Serrin problem
,
2008
.
[2]
H. Alt,et al.
A free boundary problem for semilinear elliptic equations.
,
1986
.
[3]
Equilibrium points of a singular cooperative system with free boundary
,
2013,
1309.2624.
[4]
H. Shahgholian,et al.
A discrete bernoulli free boundary problem
,
2012,
1204.6578.
[5]
L. Caffarelli,et al.
A minimization problem with free boundary related to a cooperative system
,
2016,
Duke Mathematical Journal.
[6]
Björn Gustafsson,et al.
Existence and geometric properties of solutions of a free boundary problem in potential theory.
,
1995
.
[7]
Enrico Valdinoci,et al.
Flattening Results for Elliptic PDEs in Unbounded Domains with Applications to Overdetermined Problems
,
2010
.
[8]
John M. Ball,et al.
Regularity of quasiconvex envelopes
,
2000
.
[9]
Rolando Magnanini,et al.
Matzoh ball soup: Heat conductors with a stationary isothermic surface
,
2002
.
[10]
Stationary isothermic surfaces for unbounded domains
,
2007
.
[11]
L. Caffarelli,et al.
Existence and regularity for a minimum problem with free boundary.
,
1981
.
[12]
James Serrin,et al.
A symmetry problem in potential theory
,
1971
.
[13]
A convexity problem for a semi-linear PDE
,
2019,
Applicable Analysis.
[14]
Hans F. Weinberger,et al.
Remark on the preceding paper of Serrin
,
1971
.
[15]
Nicholas J. Korevaar.
Convex solutions to nonlinear elliptic and parabolic boundary value problems
,
1981
.
[16]
Avner Friedman,et al.
The free boundary of a semilinear elliptic equation
,
1984
.
[17]
On the convexity of some free boundaries
,
2009
.
[18]
John L. Lewis.
Capacitary functions in convex rings
,
1977
.
[19]
Henrik Shahgholian,et al.
Diversifications of Serrin's and related symmetry problems
,
2012
.
[20]
Rolando Magnanini,et al.
Nonlinear diffusion with a bounded stationary level surface
,
2009,
0902.1929.