hp-DGFEM for nonlinear convection-diffusion problems

We deal with a numerical solution of nonlinear convection-diffusion problems with the aid of the discontinuous Galerkin finite element method (DGFEM). We propose a new hp-adaptation technique, which is based on a combination of a residuum-nonconformity estimator and a regularity indicator. The residuum-nonconformity estimator consists of two building blocks and it marks mesh elements for a refinement. The regularity indicator decides if the marked elements will be refined by h- or p-technique. The residuum-nonconformity estimator as well as the regularity indicator are easily computable quantities. Moreover, the same technique estimates an algebraic error arising from an iterative solution of the corresponding nonlinear algebraic system. The performance of the proposed hp-DGFEM is demonstrated by five numerical examples.

[1]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[2]  P. Houston NA-06 / 15 A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems , 2006 .

[3]  Martin Vohralík,et al.  A Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems , 2013, SIAM J. Numer. Anal..

[4]  Miloslav Feistauer,et al.  Discontinuous Galerkin solution of compressible flow in time-dependent domains , 2010, Math. Comput. Simul..

[5]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[6]  Paul Houston,et al.  Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity , 2009 .

[7]  M. Feistauer,et al.  Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems , 2005 .

[8]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[9]  Václav Kučera,et al.  Optimal L ∞(L 2)-Error Estimates for the DG Method Applied to Nonlinear Convection–Diffusion Problems with Nonlinear Diffusion , 2010 .

[10]  Alexandre Ern,et al.  Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .

[11]  Miloslav Feistauer,et al.  On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..

[12]  Vít Dolejší,et al.  An optimal L∞(L2)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection–diffusion problem , 2007 .

[13]  E. Süli,et al.  A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .

[14]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[15]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[16]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[17]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[18]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[19]  J. Melenk,et al.  An adaptive strategy for hp-FEM based on testing for analyticity , 2007 .

[20]  José Luis Gracia Lozano,et al.  A uniformly convergent alternating direction HODIE finite difference scheme for 2D time dependent convection-diffusion problems , 2005 .

[21]  J. Hozman Discontinuous Galerkin Method for Convection-Diffusion Problems , 2009 .

[22]  Vít Dolejší Analysis and application of the IIPG method to quasilinear nonstationary convection-diffusion problems , 2008 .

[23]  P. Frauenfelder,et al.  Exponential convergence of the hp-DGFEM for diffusion problems , 2003 .

[24]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[25]  Carsten Carstensen,et al.  A Posteriori Finite Element Error Control for the P-Laplace Problem , 2003, SIAM J. Sci. Comput..

[26]  Hans-Görg Roos,et al.  BDF-FEM for parabolic singularly perturbed problems with exponential layers on layer-adapted meshes in space , 2010, Neural Parallel Sci. Comput..

[27]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[28]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[29]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[30]  Manil Suri,et al.  A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .

[31]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[32]  V. Dolejší,et al.  Semi-Implicit Interior Penalty Discontinuous Galerkin Methods for Viscous Compressible Flows , 2008 .

[33]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[34]  Miloslav Feistauer,et al.  Mathematical and Computational Methods for Compressible Flow , 2003 .

[35]  A. Ern,et al.  Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .

[36]  Vít Dolejsí,et al.  Efficient solution strategy for the semi-implicit discontinuous Galerkin discretization of the Navier-Stokes equations , 2011, J. Comput. Phys..

[37]  H. van der Ven,et al.  h-Multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..

[38]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[39]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[40]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[41]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[42]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations , 2004 .

[43]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .