hp-DGFEM for nonlinear convection-diffusion problems
暂无分享,去创建一个
[1] Marco Luciano Savini,et al. Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .
[2] P. Houston. NA-06 / 15 A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems , 2006 .
[3] Martin Vohralík,et al. A Framework for Robust A Posteriori Error Control in Unsteady Nonlinear Advection-Diffusion Problems , 2013, SIAM J. Numer. Anal..
[4] Miloslav Feistauer,et al. Discontinuous Galerkin solution of compressible flow in time-dependent domains , 2010, Math. Comput. Simul..
[5] Claus-Dieter Munz,et al. A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..
[6] Paul Houston,et al. Discontinuous Galerkin methods on hp-anisotropic meshes II: a posteriori error analysis and adaptivity , 2009 .
[7] M. Feistauer,et al. Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems , 2005 .
[8] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[9] Václav Kučera,et al. Optimal L ∞(L 2)-Error Estimates for the DG Method Applied to Nonlinear Convection–Diffusion Problems with Nonlinear Diffusion , 2010 .
[10] Alexandre Ern,et al. Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian , 2008 .
[11] Miloslav Feistauer,et al. On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..
[12] Vít Dolejší,et al. An optimal L∞(L2)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection–diffusion problem , 2007 .
[13] E. Süli,et al. A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs , 2007 .
[14] Leszek Demkowicz,et al. Goal-oriented hp-adaptivity for elliptic problems , 2004 .
[15] J. Remacle,et al. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .
[16] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[17] Vít Dolejší,et al. A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .
[18] Leszek F. Demkowicz,et al. A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..
[19] J. Melenk,et al. An adaptive strategy for hp-FEM based on testing for analyticity , 2007 .
[20] José Luis Gracia Lozano,et al. A uniformly convergent alternating direction HODIE finite difference scheme for 2D time dependent convection-diffusion problems , 2005 .
[21] J. Hozman. Discontinuous Galerkin Method for Convection-Diffusion Problems , 2009 .
[22] Vít Dolejší. Analysis and application of the IIPG method to quasilinear nonstationary convection-diffusion problems , 2008 .
[23] P. Frauenfelder,et al. Exponential convergence of the hp-DGFEM for diffusion problems , 2003 .
[24] Francesco Bassi,et al. A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .
[25] Carsten Carstensen,et al. A Posteriori Finite Element Error Control for the P-Laplace Problem , 2003, SIAM J. Sci. Comput..
[26] Hans-Görg Roos,et al. BDF-FEM for parabolic singularly perturbed problems with exponential layers on layer-adapted meshes in space , 2010, Neural Parallel Sci. Comput..
[27] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[28] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[29] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[30] Manil Suri,et al. A posteriori estimation of the linearization error for strongly monotone nonlinear operators , 2007 .
[31] Christoph Schwab,et al. The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..
[32] V. Dolejší,et al. Semi-Implicit Interior Penalty Discontinuous Galerkin Methods for Viscous Compressible Flows , 2008 .
[33] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[34] Miloslav Feistauer,et al. Mathematical and Computational Methods for Compressible Flow , 2003 .
[35] A. Ern,et al. Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .
[36] Vít Dolejsí,et al. Efficient solution strategy for the semi-implicit discontinuous Galerkin discretization of the Navier-Stokes equations , 2011, J. Comput. Phys..
[37] H. van der Ven,et al. h-Multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..
[38] Ralf Hartmann,et al. An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..
[39] D. Schötzau,et al. ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .
[40] Miloslav Feistauer,et al. On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..
[41] Martin Vohralík,et al. A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..
[42] Vít Dolejší,et al. On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations , 2004 .
[43] E. Süli,et al. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .