Labeling bipartite permutation graphs with a condition at distance two

An L(p,q)-labeling of a graph G is an assignment f from vertices of G to the set of non-negative integers {0,1,...,@l} such that |f(u)-f(v)|>=p if u and v are adjacent, and |f(u)-f(v)|>=q if u and v are at distance 2 apart. The minimum value of @l for which G has L(p,q)-labeling is denoted by @l"p","q(G). The L(p,q)-labeling problem is related to the channel assignment problem for wireless networks. In this paper, we present a polynomial time algorithm for computing L(p,q)-labeling of a bipartite permutation graph G such that the largest label is at most (2p-1)+q(bc(G)-2), where bc(G) is the biclique number of G. Since @l"p","q(G)>=p+q(bc(G)-2) for any bipartite graph G, the upper bound is at most p-1 far from optimal.

[1]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[2]  Guangjun Xu,et al.  Acyclic domination on bipartite permutation graphs , 2006, Inf. Process. Lett..

[3]  Jirí Fiala,et al.  Distance Constrained Labelings of Graphs of Bounded Treewidth , 2005, ICALP.

[4]  Alan A. Bertossi,et al.  Approximate L(δ 1 ,δ 2 ,…,δ t )-coloring of trees and interval graphs , 2007 .

[5]  Jan van Leeuwen,et al.  Approximations for -Coloring of Graphs , 2004 .

[6]  Chuan Yi Tang,et al.  Solving the Weighted Efficient Edge Domination Problem on Bipartite Permutation Graphs , 1998, Discret. Appl. Math..

[7]  Roger K. Yeh A survey on labeling graphs with a condition at distance two , 2006, Discret. Math..

[8]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[9]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[10]  Jirí Fiala,et al.  Elegant Distance Constrained Labelings of Trees , 2004, WG.

[11]  Gerhard J. Woeginger,et al.  Backbone colorings for graphs: Tree and path backbones , 2007, J. Graph Theory.

[12]  Jirí Fiala,et al.  On the Computational Complexity of the L(2, 1)-Labeling Problem for Regular Graphs , 2005, ICTCS.

[13]  David Zhang,et al.  The L(2, 1)-labeling on graphs and the frequency assignment problem , 2008, Appl. Math. Lett..

[14]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[15]  Tiziana Calamoneri Rossella Petreschi λ-Coloring Matrogenic Graphs , 2005 .

[16]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[17]  George Steiner,et al.  On the k-path partition of graphs , 2003, Theor. Comput. Sci..

[18]  Jan van Leeuwen,et al.  Approximations for lambda-Colorings of Graphs , 2004, Comput. J..

[19]  Ryuhei Uehara,et al.  Linear structure of bipartite permutation graphs and the longest path problem , 2007, Inf. Process. Lett..

[20]  Anil M. Shende,et al.  Channel assignment for interference avoidance in honeycomb wireless networks , 2004, J. Parallel Distributed Comput..

[21]  J. V. D. Heuvel,et al.  Graph labeling and radio channel assignment , 1998 .

[22]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[23]  Tiziana Calamoneri,et al.  The L(h, k)-Labelling Problem: A Survey and Annotated Bibliography , 2006, Comput. J..