Algebraic classification of homogeneous polynomial vector fields in the plane

A classification is provided of two-dimensional homogeneous polynomial vector fields of arbitrary degree. This classification results from a consideration of the linear equivalence of such vector fields, using techniques from tensor and spinor algebra. It simplifies, synthesizes and generalizes previous works, which have been restricted to those cases when the polynomials are of no higher than third degree.

[1]  Two Dimensional Homogeneous Quadratic Differential Systems , 1978 .

[2]  James Wei Structure of Complex Chemical Reaction Systems , 1965 .

[3]  Richard A. Silverman,et al.  Ordinary Differential Equations , 1968, The Mathematical Gazette.

[4]  R. Penrose,et al.  Book-Review - Spinors and Spacetime - VOL.2 - Spinor and Twistor Methods in Spacetime Geometry , 1986 .

[5]  Konstantin Sergeevich Sibirsky Introduction to the Algebraic Theory of Invariants of Differential Equations , 1989 .

[6]  G. Gurevich,et al.  Foundation of the Theory of Algebraic Invariants , 1965, The Mathematical Gazette.

[7]  N. G. Lloyd,et al.  New Directions in Dynamical Systems: Limit Cycles of Polynomial Systems – Some Recent Developments , 1988 .

[8]  L. Perko,et al.  Bounded quadratic systems in the plane , 1970 .

[9]  R. Penrose,et al.  Two-spinor calculus and relativistic fields , 1984 .

[10]  Canonical forms of real homogeneous quadratic transformations , 1976 .

[11]  E. Velasco,et al.  Generic properties of polynomial vector fields at infinity , 1969 .

[12]  L. Weisner,et al.  Foundations of the theory of algebraic invariants , 1966 .

[13]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[14]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[15]  C. Collins More qualitative cosmology , 1971 .

[16]  Lawrence Markus,et al.  VIII. Quadratic Differential Equations and Non-Associative Algebras , 1960 .

[17]  Jose Argemi,et al.  Sur les points singuliers multiples de systèmes dynamiques dansR2 , 1968 .

[18]  Roger Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[19]  C. G. Hewitt,et al.  Qualitative analysis of a class of inhomogeneous self-similar cosmological models. II , 1988 .

[20]  R. Aris Algebra of Systems of Second-Order Reactions , 1964 .

[21]  D. F. Lawden An introduction to tensor calculus, relativity, and cosmology , 1982 .

[22]  J. Barrow,et al.  Inflationary Models with Exponential Potentials , 1988 .

[23]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[24]  C. G. Hewitt,et al.  Algebraic invariant curves in cosmological dynamical systems and exact solutions , 1991 .

[25]  Tsutomu Date Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems , 1979 .

[26]  J. Llibre,et al.  Algebraic and topological classification of the homogeneous cubic vector fields in the plane , 1990 .

[27]  R. Penrose,et al.  Spinor and twistor methods in space-time geometry , 1986 .

[28]  R. Penrose,et al.  Spinors and Space‐Time, Volume I: Two‐Spinor Calculus and Relativistic Fields , 1986 .