Electrochemically-triggered spatially and temporally resolved multi-component gels

Spatial control over gelation with low molecular weight gelators is possible using an electrochemically-driven pH triggering method. Gelation occurs at the electrode surface. We show here that composition control in multi-component low molecular weight hydrogels can also be achieved, allowing simultaneous spatial, temporal and compositional control.

[1]  I. Mertig,et al.  Two-dimensional electron gas and its electric control at the interface between ferroelectric and antiferromagnetic insulator studied from first principles. , 2015, Physical chemistry chemical physics : PCCP.

[2]  Kyle L. Morris,et al.  On crystal versus fiber formation in dipeptide hydrogelator systems. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[3]  E. Ingham,et al.  Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. , 2013, Nanomedicine.

[4]  Z. Shen,et al.  Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. , 2010, Nature materials.

[5]  Jing-Juan Xu,et al.  A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition. , 2004, Analytical biochemistry.

[6]  Kyle L. Morris,et al.  Chemically programmed self-sorting of gelator networks , 2013, Nature Communications.

[7]  M. Turner,et al.  An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. , 2010, Nanoscale.

[8]  R. Dittmann,et al.  Influence of charge compensation mechanisms on the sheet electron density at conducting LaAlO3/SrTiO3-interfaces , 2012 .

[9]  D. Adams,et al.  Surface nucleated growth of dipeptide fibres. , 2013, Chemical communications.

[10]  Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. , 2006, Physical review letters.

[11]  M. Rozenberg,et al.  Two-dimensional electron gas with universal subbands at the surface of SrTiO3 , 2010, Nature.

[12]  Rein V. Ulijn,et al.  Reversible Electroaddressing of Self‐assembling Amino‐Acid Conjugates , 2011 .

[13]  Kyle L. Morris,et al.  Energy transfer in self-assembled dipeptide hydrogels. , 2010, Chemical communications.

[14]  Tom O. McDonald,et al.  Dipeptide hydrogelation triggered via ultraviolet light. , 2012, Chemical communications.

[15]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[16]  Rein V Ulijn,et al.  Enzyme-assisted self-assembly under thermodynamic control. , 2009, Nature nanotechnology.

[17]  F. Gai,et al.  Amide I Band and Photoinduced Disassembly of a Peptide Hydrogel. , 2013, Chemical physics letters.

[18]  A. Fert,et al.  High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. , 2007, Physical review letters.

[19]  S. Tamaru,et al.  What kind of "soft materials" can we design from molecular gels? , 2011, Chemistry, an Asian journal.

[20]  D. Adams Dipeptide and tripeptide conjugates as low-molecular-weight hydrogelators. , 2011, Macromolecular bioscience.

[21]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[22]  H. Jaffrès,et al.  Gate-controlled spin injection at LaAlO3/SrTiO3 interfaces. , 2012, Physical review letters.

[23]  Okada,et al.  Filling dependence of electronic properties on the verge of metal-Mott-insulator transition in Sr1-xLaxTiO3. , 1993, Physical review letters.

[24]  A. Mata,et al.  Micropatterning of bioactive self-assembling gels. , 2009, Soft matter.

[25]  D. Adams,et al.  The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. , 2013, Chemical Society reviews.

[26]  Jamie R Moffat,et al.  Controlled self-sorting in the assembly of 'multi-gelator' gels. , 2009, Chemical communications.

[27]  David K Smith,et al.  Dynamic evolving two-component supramolecular gels-hierarchical control over component selection in complex mixtures. , 2013, Journal of the American Chemical Society.

[28]  Gregory F. Payne,et al.  In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes , 2010 .

[29]  M. Bibes,et al.  Ultrathin oxide films and interfaces for electronics and spintronics , 2011 .

[30]  Ali Khademhosseini,et al.  Directed 3D cell alignment and elongation in microengineered hydrogels. , 2010, Biomaterials.

[31]  Hyunmin Yi,et al.  Electrochemically Induced Deposition of a Polysaccharide Hydrogel onto a Patterned Surface , 2003 .

[32]  A. Khademhosseini,et al.  Hydrogels in Regenerative Medicine , 2009, Advanced materials.

[33]  R. Dittmann,et al.  High temperature conductance characteristics of LaAlO3/SrTiO3-heterostructures under equilibrium oxygen atmospheres , 2010 .

[34]  Kyle L. Morris,et al.  Effect of molecular structure on the properties of naphthalene-dipeptide hydrogelators. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[35]  Kyle L. Morris,et al.  Salt-induced hydrogelation of functionalised-dipeptides at high pH. , 2011, Chemical communications.

[36]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[37]  P. Chiu,et al.  Ferroelectric Control of the Conduction at the LaAlO3/SrTiO3 Heterointerface , 2013, Advanced materials.

[38]  S. Rowan,et al.  Supramolecular gels formed from multi-component low molecular weight species. , 2012, Chemical Society reviews.

[39]  Andrew M. Smith,et al.  Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[40]  B. Jeong,et al.  Recent progress of in situ formed gels for biomedical applications , 2013 .

[41]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[42]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[43]  C. M. Folkman,et al.  Correction: Corrigendum: Creation of a two-dimensional electron gas at an oxide interface on silicon , 2010, Nature Communications.

[44]  Dirk Kuckling,et al.  Responsive hydrogels--structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. , 2013, Chemical Society reviews.

[45]  Yi Cheng,et al.  Electroaddressing agarose using Fmoc-phenylalanine as a temporary scaffold. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[46]  M. Stengel First-principles modeling of electrostatically doped perovskite systems. , 2010, Physical review letters.

[47]  B. Shklovskii,et al.  Accumulation, inversion, and depletion layers in SrTiO 3 , 2014, 1412.6024.

[48]  Laurent David,et al.  Electrodeposition of a biopolymeric hydrogel: potential for one-step protein electroaddressing. , 2012, Biomacromolecules.

[49]  J. Tovar,et al.  Supramolecular construction of optoelectronic biomaterials. , 2013, Accounts of chemical research.

[50]  H. Hwang,et al.  Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. , 2009, Physical review letters.

[51]  Reza Ghodssi,et al.  Integrated biofabrication for electro‐addressed in‐film bioprocessing , 2012, Biotechnology journal.

[52]  H. Hwang,et al.  Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. , 2013, Nature materials.

[53]  Gregory F. Payne,et al.  Electroaddressing Functionalized Polysaccharides as Model Biofilms for Interrogating Cell Signaling , 2012 .

[54]  Harold Y. Hwang,et al.  Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface , 2011 .

[55]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[56]  S. Stemmer,et al.  Two-Dimensional Electron Gases at Complex Oxide Interfaces , 2014 .

[57]  B. Escuder,et al.  Supramolecular catalysis with extended aggregates and gels: inversion of stereoselectivity caused by self-assembly. , 2010, Chemistry.

[58]  Andrés J. García,et al.  Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates. , 2006, Biomaterials.

[59]  Metal-to-insulator transition in LaAl 1 − x Cr x O 3 / SrTiO 3 oxide heterostructures guided by electronic reconstruction , 2015 .

[60]  J. Mannhart,et al.  Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures , 2006, Science.

[61]  S. Van Vlierberghe,et al.  Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. , 2011, Biomacromolecules.

[62]  H. Hwang,et al.  Built-in and induced polarization across LaAlO3/SrTiO3 heterojunctions , 2010, 1005.4257.

[63]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[64]  Nathan Stafford,et al.  Electrochemical preparation of chitosan/hydroxyapatite composite coatings on titanium substrates. , 2003, Journal of biomedical materials research. Part A.

[65]  Guru Khalsa,et al.  Theory of the SrTiO 3 surface state two-dimensional electron gas , 2012, 1205.4362.

[66]  J. Heber Materials science: Enter the oxides , 2009, Nature.

[67]  I. Hamley,et al.  Self-assembly of two-component gels: stoichiometric control and component selection. , 2009, Chemistry.

[68]  Tom O. McDonald,et al.  Salt-induced hydrogels from functionalised-dipeptides , 2013 .

[69]  W. Bentley,et al.  Coupling Electrodeposition with Layer‐by‐Layer Assembly to Address Proteins within Microfluidic Channels , 2011, Advanced materials.

[70]  Dave J Adams,et al.  Directed self-assembly of dipeptides to form ultrathin hydrogel membranes. , 2010, Journal of the American Chemical Society.

[71]  B. Feringa,et al.  Design and application of self-assembled low molecular weight hydrogels , 2005 .

[72]  B. Nilsson,et al.  Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering , 2012 .

[73]  Neralagatta M Sangeetha,et al.  Supramolecular gels: functions and uses. , 2005, Chemical Society reviews.

[74]  Kyle L. Morris,et al.  Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[75]  C. Tomasini,et al.  Peptides and peptidomimetics that behave as low molecular weight gelators. , 2013, Chemical Society reviews.

[76]  Paul Sanderson,et al.  A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators , 2009 .