THE SPATIAL EXTENT OF (U)LIRGS IN THE MID-INFRARED. II. FEATURE EMISSION

We present results from the second part of our analysis of the extended mid-infrared (MIR) emission of the GOALS sample based on 5–14 μm low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for all galaxies in the sample, FEEλ, defined as the fraction of the emission that originates outside of the unresolved central component of a source, and spatially separate the MIR spectrum of a galaxy into its nuclear and extended components. We find that the [Ne ii]12.81 μm emission line is as compact as the hot dust MIR continuum, while the polycyclic aromatic hydrocarbon (PAH) emission is more extended. In addition, the 6.2 and 7.7 μm PAH emission is more compact than that of the 11.3 μm PAH, which is consistent with the formers being enhanced in a more ionized medium. The presence of an active galactic nucleus (AGN) or a powerful nuclear starburst increases the compactness and the luminosity surface density of the hot dust MIR continuum, but has a negligible effect on the spatial extent of the PAH emission on kpc-scales. Furthermore, it appears that both processes, AGN and/or nuclear starburst, are indistinguishable in terms of how they modify the integrated PAH-to-continuum ratio of the FEE in (ultra)luminous infrared galaxies ((U)LIRGs). Globally, the 5–14 μm spectra of the extended emission component are homogeneous for all galaxies in the GOALS sample. This suggests that, independently of the spatial distribution of the various MIR features, the physical properties of star formation occurring at distances farther than 1.5 kpc from the nuclei of (U)LIRGs are very similar, resembling local star-forming galaxies with LIR <  1011 L☉, as well as star-formation-dominated ULIRGs at z ∼ 2. In contrast, the MIR spectra of the nuclear component of local ULIRGs and LIRGs are very diverse. These results imply that the observed variety of the integrated MIR properties of local (U)LIRGs arise, on average, only from the processes that are taking place in their cores.

[1]  M. Dickinson,et al.  AN ACCOUNTING OF THE DUST-OBSCURED STAR FORMATION AND ACCRETION HISTORIES OVER THE LAST ∼11 BILLION YEARS , 2011, 1102.3920.

[2]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[3]  A. Evans,et al.  THE NUCLEAR STRUCTURE IN NEARBY LUMINOUS INFRARED GALAXIES: HUBBLE SPACE TELESCOPE NICMOS IMAGING OF THE GOALS SAMPLE , 2010, 1012.4012.

[4]  R. Riffel,et al.  POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES , 2010, 1010.2170.

[5]  D. Eisenstein,et al.  MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES , 2010, 1010.0675.

[6]  Ipac,et al.  THE SPATIAL EXTENT OF (U)LIRGs IN THE MID-INFRARED. I. THE CONTINUUM EMISSION , 2010, 1009.0038.

[7]  B. Madore,et al.  MID-INFRARED SPECTRAL DIAGNOSTICS OF LUMINOUS INFRARED GALAXIES , 2010, 1012.1891.

[8]  P. P. van der Werf,et al.  Special Feature Herschel Observations of Water Vapour in Markarian 231 , 2022 .

[9]  G. Savini,et al.  Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231 , 2010, 1005.2877.

[10]  D. Calzetti,et al.  PACS and SPIRE photometer maps of M33: First results of the Herschel M33 extended survey (HERM33ES) , 2010, 1005.2563.

[11]  D. L. Clements,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel Space Observatory view of dust in M 81 , 2010 .

[12]  Kevin Xu,et al.  THE GREAT OBSERVATORIES ALL-SKY LIRG SURVEY: COMPARISON OF ULTRAVIOLET AND FAR-INFRARED PROPERTIES , 2010, 1004.0985.

[13]  M. Pereira-Santaella,et al.  A HIGH SPATIAL RESOLUTION MID-INFRARED SPECTROSCOPIC STUDY OF THE NUCLEI AND STAR-FORMING REGIONS IN LUMINOUS INFRARED GALAXIES , 2010, 1001.1871.

[14]  R. Maiolino,et al.  SPITZER INFRARED LOW-RESOLUTION SPECTROSCOPIC STUDY OF BURIED ACTIVE GALACTIC NUCLEI IN A COMPLETE SAMPLE OF NEARBY ULTRALUMINOUS INFRARED GALAXIES , 2009, 0912.2748.

[15]  L. Colina,et al.  Integral field optical spectroscopy of a representative sample of ULIRGs - II. Two-dimensional kpc-scale extinction structure , 2009, 0907.2218.

[16]  Jia-Sheng Huang,et al.  SPITZER/IRS 5–35 μm LOW-RESOLUTION SPECTROSCOPY OF THE 12 μm SEYFERT SAMPLE , 2009, 0906.2004.

[17]  S. Veilleux,et al.  SPITZER QUASAR AND ULIRG EVOLUTION STUDY (QUEST). IV. COMPARISON OF 1 Jy ULTRALUMINOUS INFRARED GALAXIES WITH PALOMAR-GREEN QUASARS , 2009, 0905.1577.

[18]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[19]  I. Smail,et al.  MID-INFRARED SPECTROSCOPY OF SUBMILLIMETER GALAXIES: EXTENDED STAR FORMATION IN MASSIVE HIGH-REDSHIFT GALAXIES , 2009, 0903.4017.

[20]  M. Imanishi Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/26/04 LUMINOUS BURIED AGNS AS A FUNCTION OF GALAXY INFRARED LUMINOSITY REVEALED THROUGH SPITZER LOW-RESOLUTION INFRARED SPECTROSCOPY , 2022 .

[21]  S. Kaviraj An ultraviolet study of nearby luminous infrared galaxies: star formation histories and the role of AGN , 2007, 0801.0127.

[22]  L. Colina,et al.  Understanding the 8 μm versus Paα Relationship on Subarcsecond Scales in Luminous Infrared Galaxies , 2008, 0803.2229.

[23]  E. Peeters,et al.  Variations of the Mid-IR Aromatic Features inside and among Galaxies , 2008, 0801.4955.

[24]  C. Lonsdale,et al.  The Nature of Star Formation in Distant Ultraluminous Infrared Galaxies Selected in a Remarkably Narrow Redshift Range , 2008, 0801.1842.

[25]  Mario Schweitzer,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). II. The Spectral Energy Distributions of Palomar-Green Quasars , 2007, 0706.0818.

[26]  Astronomy,et al.  The Calibration of Mid-Infrared Star Formation Rate Indicators , 2007, 0705.3377.

[27]  Takao Nakagawa,et al.  A Spitzer IRS Low-Resolution Spectroscopic Search for Buried AGNs in Nearby Ultraluminous Infrared Galaxies: A Constraint on Geometry between Energy Sources and Dust , 2007, astro-ph/0702136.

[28]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[29]  Jr.,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[30]  J. Bernard-Salas,et al.  The Mid-Infrared Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy , 2006 .

[31]  L. Armus,et al.  Mid-Infrared Galaxy Classification Based on Silicate Obscuration and PAH Equivalent Width , 2006, astro-ph/0611918.

[32]  R. Genzel,et al.  Spitzer Quasar and ULIRG Evolution Study (QUEST). I. The Origin of the Far-Infrared Continuum of QSOs , 2006, astro-ph/0606158.

[33]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[34]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[35]  C. Grillmair,et al.  Observations of Ultraluminous Infrared Galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. II. The IRAS Bright Galaxy Sample , 2006, astro-ph/0610218.

[36]  I. Mirabel,et al.  A Bias in Optical Observations of High-Redshift Luminous Infrared Galaxies , 2003, astro-ph/0311632.

[37]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[38]  G. Neugebauer,et al.  High Spatial Resolution Mid-Infrared Observations of Three Seyfert Galaxies , 2003, astro-ph/0304105.

[39]  G. Neugebauer,et al.  Mid-Infrared Spectroscopy of Infrared-Luminous Galaxies with Subarcsecond Resolution , 2002, astro-ph/0207444.

[40]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[41]  Sap,et al.  Mid-infrared observations of the ultraluminous galaxies IRAS 14348-1447, IRAS 19254-7245, and IRAS 23128-5919 , 2002, astro-ph/0206150.

[42]  M. Rieke,et al.  Massive Star Formation in Luminous Infrared Galaxies: Giant H II Regions and Their Relation to Super-Star Clusters , 2002, astro-ph/0203494.

[43]  Infrared Emission from Interstellar Dust. I. Stochastic Heating of Small Grains , 2000, astro-ph/0011318.

[44]  S. Sandford,et al.  Modeling the Unidentified Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons , 1999, The Astrophysical journal.

[45]  R. Genzel,et al.  The Nature and Evolution of Ultraluminous Infrared Galaxies:A Mid-Infrared Spectroscopic Survey , 1998, astro-ph/9806270.

[46]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[47]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[48]  B. Greenawalt,et al.  Far-Infrared Radiation from Dust Heated by the Interstellar Radiation Field in Spiral Galaxies , 1996 .

[49]  M. Sauvage,et al.  On the Use of Far-Infrared Luminosity as a Star Formation Indicator in Galaxies , 1992 .