Uniform Twister Plane Generator

Random plane generators may use various types of the random number algorithms to create multidimensional planes. At the same time, the discrete Descartes random planes have to be uniform. The matter is that using the concept of the uncontrolled random generation may lead to a result of weak quality due to initial sequences having either insufficient uniformity or skipping of the random numbers. This article offers a new approach for creating the absolute twisting uniform two-dimensional Descartes planes based on a model of complete twisting sequences of uniform random variables without repetitions or skipping. The simulation analyses confirm that the resulted random planes have an absolute uniformity. Moreover, combining the parameters of the original complete uniform sequences allows a significant increase in the number of created planes without using additional random access memory.

[1]  Ramin Zabih,et al.  Factorial Markov Random Fields , 2002, ECCV.

[2]  V. Zharov,et al.  Real-time monitoring of circulating tumor cell (CTC) release after nanodrug or tumor radiotherapy using in vivo flow cytometry. , 2017, Biochemical and biophysical research communications.

[3]  Henning Omre,et al.  Skew-Gaussian random fields , 2014 .

[4]  S. Dachian,et al.  On Gibbsianness of Random Fields , 2006, math/0609688.

[5]  Newman,et al.  Monte Carlo study of the random-field Ising model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Mustafa Sarimollaoglu,et al.  Optical clearing in photoacoustic flow cytometry. , 2013, Biomedical optics express.

[7]  L. M. M.-T. Theory of Probability , 1929, Nature.

[8]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..

[9]  Vladimir P. Zharov,et al.  Phototherapeutic technologies for oncology , 2005, Current Research on Laser Use in Oncology.

[10]  Yu. A. Menyaev,et al.  Experience in development of therapeutic photomatrix equipment , 2006, Meditsinskaia tekhnika.

[11]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[12]  Uniform modulus of continuity of random fields , 2009, 0907.2291.

[13]  Yulian A. Menyaev,et al.  Parametrical Tuning of Twisting Generators , 2016, J. Comput. Sci..

[14]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[15]  Makoto Matsumoto,et al.  Pseudorandom Number Generation: Impossibility and Compromise , 2006, J. Univers. Comput. Sci..

[16]  P. Spanos,et al.  Monte Carlo Treatment of Random Fields: A Broad Perspective , 1998 .

[17]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[18]  Yuan Qi,et al.  Bayesian Conditional Random Fields , 2005, AISTATS.

[19]  Trevor Darrell,et al.  Conditional Random Fields for Object Recognition , 2004, NIPS.

[20]  V. Zharov,et al.  Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery. , 2016, Biomedical optics express.

[21]  Yulian A. Menyaev,et al.  Twister Generator of Arbitrary Uniform Sequences , 2017, J. Univers. Comput. Sci..

[22]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.

[23]  Daniel Jurafsky,et al.  Hidden Conditional Random Fields for phone recognition , 2009, 2009 IEEE Workshop on Automatic Speech Recognition & Understanding.

[24]  Erik G. Learned-Miller,et al.  Combinatorial Markov Random Fields , 2006, ECML.

[25]  Emery D. Berger,et al.  DieHard: probabilistic memory safety for unsafe languages , 2006, PLDI '06.

[26]  Mohammed M. Alani,et al.  Testing Randomness in Ciphertext of Block-Ciphers Using DieHard Tests , 2010 .

[27]  Emery D. Berger,et al.  DieHarder: securing the heap , 2010, CCS '10.

[28]  Yulian A. Menyaev,et al.  The Complete Set Simulation of Stochastic Sequences without Repeated and Skipped Elements , 2016, J. Univers. Comput. Sci..

[29]  Makoto Matsumoto,et al.  SIMD-Oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator , 2008 .

[30]  William W. Cohen,et al.  Semi-Markov Conditional Random Fields for Information Extraction , 2004, NIPS.

[31]  Makoto Matsumoto,et al.  Common defects in initialization of pseudorandom number generators , 2007, TOMC.