Time Scales of a Chaotic Semiconductor Laser With Optical Feedback Under the Lens of a Permutation Information Analysis

We analyze the intrinsic time scales of the chaotic dynamics of a semiconductor laser subject to optical feedback by estimating quantifiers derived from a permutation information approach. Based on numerically and experimentally obtained times series, we find that permutation entropy and permutation statistical complexity allow the extraction of important characteristics of the dynamics of the system. We provide evidence that permutation statistical complexity is complementary to permutation entropy, giving valuable insights into the role of the different time scales involved in the chaotic regime of the semiconductor laser dynamics subject to delay optical feedback. The results obtained confirm that this novel approach is a conceptually simple and computationally efficient method to identify the characteristic time scales of this relevant physical system.

[1]  Ramakrishna Ramaswamy,et al.  Information-entropic analysis of chaotic time series: determination of time-delays and dynamical coupling , 2002 .

[2]  Osvaldo A. Rosso,et al.  Generalized statistical complexity measures: Geometrical and analytical properties , 2006 .

[3]  J. Ohtsubo Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback , 2002 .

[4]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[5]  P. Colet,et al.  Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications , 2009, IEEE Photonics Technology Letters.

[6]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[7]  A. Fowler,et al.  Delay recognition in chaotic time series , 1993 .

[8]  A. Rechester,et al.  Symbolic Analysis of Chaotic Signals and Turbulent Fluctuations , 1997 .

[9]  Ingo Fischer,et al.  Rainbow refractometry with a tailored incoherent semiconductor laser source , 2006 .

[10]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[11]  W. Marsden I and J , 2012 .

[12]  Silvano Donati,et al.  Synchronization of chaotic injected-laser systems and its application to optical cryptography , 1996 .

[13]  D S Citrin,et al.  Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. , 2007, Optics letters.

[14]  Alexandre Locquet,et al.  Time delay identification in chaotic cryptosystems ruled by delay-differential equations , 2005 .

[15]  D. Lenstra,et al.  Coherence collapse in single-mode semiconductor lasers due to optical feedback , 1985, IEEE Journal of Quantum Electronics.

[16]  A. Plastino,et al.  Statistical Complexity of Sampled Chaotic Attractors , 2011, 1105.3927.

[17]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[18]  Fischer,et al.  High-dimensional chaotic dynamics of an external cavity semiconductor laser. , 1994, Physical review letters.

[19]  Fan-Yi Lin,et al.  Diverse waveform generation using semiconductor lasers for radar and microwave applications , 2004 .

[20]  S. Ortin,et al.  Time-Delay Identification in a Chaotic Semiconductor Laser With Optical Feedback: A Dynamical Point of View , 2009, IEEE Journal of Quantum Electronics.

[21]  Javier M. Buldú,et al.  Quantifying stochasticity in the dynamics of delay-coupled semiconductor lasers via forbidden patterns , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Fischer,et al.  Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers. , 1996, Physical review letters.

[23]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[24]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[25]  Rajarshi Roy,et al.  Chaotic lasers: The world's fastest dice , 2008 .

[26]  Juergen Kurths,et al.  Reconstruction of Nonlinear Time-Delayed Feedback Models From Optical Data , 1999 .

[27]  Osvaldo A. Rosso,et al.  Intensive entropic non-triviality measure , 2004 .

[28]  Holger Kantz,et al.  Identifying and Modeling Delay Feedback Systems. , 1998, chao-dyn/9907019.

[29]  O. Rosso,et al.  Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency , 2010 .

[30]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Jia-Ming Liu,et al.  Chaotic lidar , 2004, SPIE LASE.

[32]  Zheng-Mao Wu,et al.  Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser , 2009 .

[33]  Ingo Fischer,et al.  Estimation of delay times from a delayed optical feedback laser experiment , 1998 .

[34]  M. C. Soriano,et al.  Permutation-information-theory approach to unveil delay dynamics from time-series analysis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  S. Ortı́na,et al.  Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction , 2005 .

[36]  Miguel A. F. Sanjuán,et al.  True and false forbidden patterns in deterministic and random dynamics , 2007 .

[37]  Furong Gao,et al.  Extraction of delay information from chaotic time series based on information entropy , 1997 .

[38]  Cristina Masoller,et al.  Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers with optical feedback , 2010 .

[39]  C Zhou,et al.  Extracting messages masked by chaotic signals of time-delay systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  P. Colet,et al.  Synchronization of chaotic semiconductor lasers: application to encoded communications , 1996, IEEE Photonics Technology Letters.

[41]  Massimiliano Zanin,et al.  Forbidden patterns in financial time series. , 2007, Chaos.

[42]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[43]  O A Rosso,et al.  Quantifiers for randomness of chaotic pseudo-random number generators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Matthäus Staniek,et al.  Parameter Selection for Permutation Entropy Measurements , 2007, Int. J. Bifurc. Chaos.

[45]  M Siefert,et al.  Practical criterion for delay estimation using random perturbations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Cristina Masoller,et al.  Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Juan Sanchez,et al.  A method to discern complexity in two-dimensional patterns generated by coupled map lattices , 2004, nlin/0410062.

[48]  Carl S. McTague,et al.  The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. , 2008, Chaos.

[49]  V I Ponomarenko,et al.  Reconstruction of time-delay systems using small impulsive disturbances. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Ingo Fischer,et al.  Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. , 2001 .

[51]  Hucheng He,et al.  Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback , 2008, IEEE Photonics Technology Letters.

[52]  Adonis Bogris,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[53]  I. Grosse,et al.  Analysis of symbolic sequences using the Jensen-Shannon divergence. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  A. Plastino,et al.  Permutation entropy of fractional Brownian motion and fractional Gaussian noise , 2008 .

[55]  Jiagui Wu,et al.  Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. , 2009, Optics express.

[56]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[57]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[58]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .