Optimization Algorithm Based on Biology Life Cycle Theory

Bio-inspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biology life cycle, this paper presents a novel optimization algorithm called Lifecycle-based Swarm Optimization. LSO algorithm simulates biologic life cycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection and mutation. Experiments were conducted on 7 unimodal functions. The results demonstrate remarkable performance of the LSO algorithm on those functions when compared to several successful optimization techniques.

[1]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[2]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 1845, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.

[3]  S.G. Ponnambalam,et al.  A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[4]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[5]  P. Verhulst,et al.  Deuxième Mémoire sur la Loi d'Accroissement de la Population. , 2022 .

[6]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[7]  Q. Henry Wu,et al.  A Novel Group Search Optimizer Inspired by Animal Behavioural Ecology , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[8]  Hong Wang,et al.  Bacterial Colony Optimization , 2012 .

[9]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[10]  Alex Alves Freitas,et al.  Data mining with an ant colony optimization algorithm , 2002, IEEE Trans. Evol. Comput..

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  Roberto Montemanni,et al.  Time dependent vehicle routing problem with a multi ant colony system , 2008, Eur. J. Oper. Res..

[13]  Ben Niu,et al.  Bacterial foraging based approaches to portfolio optimization with liquidity risk , 2012, Neurocomputing.

[14]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[15]  Simeon M. Berman Mathematical statistics;: An introduction based on the normal distribution , 1971 .

[16]  D. Roff The evolution of life histories : theory and analysis , 1992 .

[17]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[18]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.