Numerical Simulation of Delamination Growth in Composite Materials

The use of decohesion elements for the simulation of delamination in composite materials is reviewed. The test methods available to measure the interfacial fracture toughness used in the formulation of decohesion elements are described initially. After a brief presentation of the virtual crack closure technique, the technique most widely used to simulate delamination growth, the formulation of interfacial decohesion elements is described. Problems related with decohesion element constitutive equations, mixed-mode crack growth, element numerical integration and solution procedures are discussed. Based on these investigations, it is concluded that the use of interfacial decohesion elements is a promising technique that avoids the need for a pre-existing crack and pre-defined crack paths, and that these elements can be used to simulate both delamination onset and growth.

[1]  P.M.S.T. de Castro,et al.  Prediction of compressive strength of carbon–epoxy laminates containing delamination by using a mixed-mode damage model , 2000 .

[2]  Krueger Ronald,et al.  A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates , 2000 .

[3]  P.M.S.T. de Castro,et al.  Interface element including point‐to‐surface constraints for three‐dimensional problems with damage propagation , 2000 .

[4]  Alan Needleman,et al.  An analysis of intersonic crack growth under shear loading , 1999 .

[5]  F. L. Matthews,et al.  Predicting Progressive Delamination of Composite Material Specimens via Interface Elements , 1999 .

[6]  Pierre J. A. Minguet,et al.  A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading , 1999 .

[7]  F. L. Matthews,et al.  Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates , 1999 .

[8]  J. G. Williams,et al.  Delamination Fracture of Multidirectional Carbon-Fiber/Epoxy Composites under Mode I, Mode II and Mixed-Mode I/II Loading , 1999 .

[9]  Jr. J. Crews,et al.  A Mixed-Mode Bending Apparatus for Delamination Testing , 1998 .

[10]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[11]  D. Owen,et al.  A combined finite/discrete element algorithm for delamination analysis of composites , 1998 .

[12]  A. T. Marques,et al.  Modeling Compression Failure after Low Velocity Impact on Laminated Composites Using Interface Elements , 1997 .

[13]  Anthony M. Waas,et al.  Non–self–similar decohesion along a finite interface of unilaterally constrained delaminations , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  F. J. Mello,et al.  Modeling the Initiation and Growth of Delaminations in Composite Structures , 1996 .

[15]  J. Li,et al.  Simplified Data Reduction Methods for the ECT Test for Mode III Interlaminar Fracture Toughness , 1996 .

[16]  P. Ladeveze,et al.  A damage computational approach for composites: Basic aspects and micromechanical relations , 1995 .

[17]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[18]  Li Jian,et al.  Analysis of a symmetric laminate with mid-plane free edge delamination under torsion: theory and application to the edge crack torsion (ECT) specimen for mode III toughness characterization , 1994 .

[19]  Rh Martin,et al.  Round Robin Testing for Mode I Interlaminar Fracture Toughness of Composite Materials , 1993 .

[20]  Shaw-Ming Lee An Edge Crack Torsion Method for Mode III Delamination Fracture Testing , 1993 .

[21]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[22]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[23]  J. Schellekens,et al.  Computational strategies for composite structures , 1992 .

[24]  P. Robinson,et al.  A Modified DCB Specimen for Mode I Testing of Multidirectional Laminates , 1992 .

[25]  S. Sirtori Fracture mechanics criteria and applications , 1992 .

[26]  W. Cui,et al.  A comparison of failure criteria to predict delamination of unidirectional glass/epoxy specimens waisted through the thickness , 1992 .

[27]  J. Reeder,et al.  An Evaluation of Mixed-Mode Delamination Failure Criteria , 1992 .

[28]  J. Williams,et al.  The fracture mechanics of delamination tests , 1989 .

[29]  Jan G. Rots,et al.  Occurrence of spurious mechanisms in computations of strain‐softening solids , 1989 .

[30]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[31]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[32]  ROBERT. F. LEGGET,et al.  American Society for Testing and Materials , 1964, Nature.

[33]  C. Dávila,et al.  Analysis of delamination initiation in postbuckled dropped-ply laminates , 1963 .

[34]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[35]  M. D. Moura,et al.  Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination , 2001 .

[36]  P. Camanho,et al.  Application of numerical methods to the strength prediction of mechanically fastened joints in composite laminates , 1999 .

[37]  Michael R Wisnom,et al.  PREDICTION OF DELAMINATION INITIATION AND GROWTH FROM DISCONTINUOUS PLIES USING INTERFACE ELEMENTS , 1998 .

[38]  M. Richardson,et al.  The finite element analysis of impact induced delamination in composite materials using a novel interface element , 1998 .

[39]  Tk O'Brien,et al.  Composite Interlaminar Shear Fracture Toughness, G IIc : Shear Measurement or Sheer Myth? , 1998 .

[40]  Laurent Daudeville,et al.  Delamination analysis by damage mechanics: Some applications , 1995 .

[41]  James R. Reeder,et al.  A Bilinear Failure Criterion for Mixed-Mode Delamination , 1993 .

[42]  R. de Borst,et al.  Numerical Simulation of Free Edge Delamination in Graphite-Epoxy Laminates under Uniaxial Tension , 1991 .

[43]  J. R. Reeder,et al.  Nonlinear Analysis and Redesign of the Mixed-Mode Bending Delamination Test , 1991 .

[44]  I. Raju,et al.  Convergence of strain energy release rate components for Edge-Delaminated composite laminates , 1988 .

[45]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[46]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .