Transonic Flutter Characteristics of the AGARD 445.6 Wing Considering DES Turbulent Model and Different Angle-of-Attacks

In this study, transonic flutter response characteristics have been studied for the AGARD 445.6 wing considering various turbulent models and several angle of attacks. The developed fluid-structure coupled analysis system is applied for flutter computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. The flutter boundaries of AGARD 445.6 wing are verified using developed computational system. For the nonlinear unsteady aerodynamics in high transonic flow region, DES turbulent model using the structured grid system have been applied for the wing model. Characteristics of flutter responses have been investigated for various angle of attack conditions. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.