Prospective important semiconducting nanotubes: synthesis, properties and applications

Semiconducting nanotubes with well-controlled dimensions, compositions and crystal structures represent a new class of intriguing systems for detailed studies of structure–property relationships at the nanoscale and prospective functional applications. This article features recent research progress in the design of different synthetic routes towards important semiconducting nanotubes made of groupIV: silicon; groupIII–V: GaN, GaP, AlN, InN and InP, and groupII–VI: ZnO, ZnS, ZnSe, CdS and CdSe. The fabricated nanotubes possess desirable atomic structures, surfaces, morphologies and properties to meet the growing demands and specific requirements of new technologies.

[1]  B. Teo,et al.  Silicon-based low-dimensional nanomaterials and nanodevices. , 2013, Chemical reviews.

[2]  G. Zou,et al.  Pressure-Induced Structural Transitions of the Zinc Sulfide Nano-particles with Different Sizes , 2009 .

[3]  D. Qiu,et al.  Fabrication of ZnO Nanoneedle/nanocolumn Composite Films and Annealing Induced Improvement in Their Microstructural and Photoluminescence Characteristics , 2009 .

[4]  Z. Key One-Dimensional (1D) ZnS Nanomaterials and Nanostructures , 2009 .

[5]  C. Lévy‐Clément,et al.  Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions , 2008 .

[6]  S. Santra,et al.  ZnO Nanotube Arrays and Nanotube-Based Paint-Brush Structures: A Simple Methodology of Fabricating Hierarchical Nanostructures with Self-Assembled Junctions and Branches , 2008 .

[7]  Xiaojun Wu,et al.  Adsorption of O2, H2, CO, NH3, and NO2 on ZnO Nanotube: A Density Functional Theory Study , 2008 .

[8]  Jie Liu,et al.  Preparation and characterization of CdS nanotubes and nanowires by electrochemical synthesis in ion-track templates , 2008 .

[9]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[10]  Hyunjun Yoo,et al.  Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications† , 2008 .

[11]  Shui-Tong Lee,et al.  Epitaxial ZnS/Si core–shell nanowires and single-crystal silicon tube field-effect transistors , 2008 .

[12]  G. Zou,et al.  Fabrication and Optical Properties of Large-Scale ZnO Nanotube Bundles via a Simple Solution Route , 2007 .

[13]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[14]  Joseph T Hupp,et al.  ZnO nanotube based dye-sensitized solar cells. , 2007, Nano letters.

[15]  Benjamin Gilbert,et al.  Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles , 2007, Science.

[16]  Wenzhong Shen,et al.  Integration of ZnO Nanotubes with Well-Ordered Nanorods through Two-Step Thermal Evaporation Approach , 2007 .

[17]  Chenglin Yan,et al.  Electroless deposition of aligned ZnO taper-tubes in a strong acidic medium , 2007 .

[18]  Lei Shi,et al.  Single crystalline ZnS nanotubes and their structural degradation under electron beam irradiation , 2007 .

[19]  Yonggang Zhu,et al.  Direct Electrodeposition of ZnO Nanotube Arrays in Anodic Alumina Membranes , 2007 .

[20]  Xiaoping Shen,et al.  One-step construction of ZnS/C and CdS/C one-dimensional core–shell nanostructures , 2007 .

[21]  Dongsheng Xu,et al.  Single-Crystalline ZnO Nanotube Arrays on Conductive Glass Substrates by Selective Disolution of Electrodeposited ZnO Nanorods , 2007 .

[22]  G. Shen,et al.  InP-GaP Bi-Coaxial Nanowires and Amorphous GaP Nanotubes , 2007 .

[23]  Qiang Zhao,et al.  Silicon nanotube array/gold electrode for direct electrochemistry of cytochrome c. , 2007, The journal of physical chemistry. B.

[24]  Wanyong Ma,et al.  Solution−Liquid−Solid-Induced Tip-Growth of Filled-GaN Nanotubes on MCM-48 Microspheres , 2007 .

[25]  T. Fukushima,et al.  Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers , 2006, Science.

[26]  J. Yao,et al.  Synthesis of ordered ZnS nanotubes by MOCVD-template method , 2006 .

[27]  Chenglin Yan,et al.  Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. , 2006, The journal of physical chemistry. B.

[28]  Z. Wang,et al.  SiO2/Ta2O5 Core–Shell Nanowires and Nanotubes , 2006 .

[29]  R. Tenne,et al.  Inorganic nanotubes and fullerene-like nanoparticles , 2006, Nature nanotechnology.

[30]  M. Gao,et al.  Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer. , 2006, Angewandte Chemie.

[31]  L. Tang,et al.  Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. , 2006, Chemical communications.

[32]  A. Stiegman,et al.  Fabrication of Stable Low‐Density Silica Aerogels Containing Luminescent ZnS Capped CdSe Quantum Dots , 2006 .

[33]  D. Riley,et al.  Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. , 2006, The journal of physical chemistry. B.

[34]  D. Shen,et al.  Growth and optical properties of faceted hexagonal ZnO nanotubes. , 2006, The journal of physical chemistry. B.

[35]  Mato Knez,et al.  Monocrystalline spinel nanotube fabrication based on the Kirkendall effect , 2006, Nature materials.

[36]  Xiangyang Ma,et al.  Synthesis and characterization of CdS based sulfide coaxial cable and nanotubes by sacrificial approach , 2006 .

[37]  C. Balasubramanian,et al.  Silicon nanotubes : Synthesis and characterization , 2006 .

[38]  Bai Yang,et al.  A Facile Route to ZnS–Polymer Nanocomposite Optical Materials with High Nanophase Content via γ‐Ray Irradiation Initiated Bulk Polymerization , 2006 .

[39]  P. O’Brien,et al.  Recent developments in II–VI and III–VI semiconductors and their applications in solar cells , 2006 .

[40]  Liang Li,et al.  Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. , 2006, Small.

[41]  G. Shen,et al.  Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires , 2006 .

[42]  Lide Zhang,et al.  Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts , 2006 .

[43]  H. Zeng Synthetic architecture of interior space for inorganic nanostructures , 2006 .

[44]  Peidong Yang,et al.  Inorganic nanotubes: a novel platform for nanofluidics. , 2006, Accounts of chemical research.

[45]  Yun Chi,et al.  Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bi-functionality toward imaging and photosensitization. , 2006, Chemical communications.

[46]  C. Gu,et al.  Controllable Synthesis and Growth Model of Amorphous Silicon Nanotubes with Periodically Dome‐Shaped Interiors , 2006 .

[47]  Xiaoping Zhou,et al.  Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. , 2005, Chemical communications.

[48]  Gareth M. Fuge,et al.  Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film , 2005 .

[49]  Younan Xia,et al.  Some recent developments in the chemical synthesis of inorganic nanotubes. , 2005, Chemical communications.

[50]  Xizhang Wang,et al.  Synthesis and optical properties of gallium phosphide nanotubes. , 2005, The journal of physical chemistry. B.

[51]  Y. W. Chen,et al.  Self-assembled silicon nanotubes under supercritically hydrothermal conditions. , 2005, Physical review letters.

[52]  Junqing Hu,et al.  Single-crystalline nanotubes of IIB-VI semiconductors , 2005 .

[53]  W. Qingqing,et al.  Solvothermal synthesis and characterization of uniform CdS nanowires in high yield , 2005 .

[54]  Y. Bando,et al.  Self‐Assembled Highly Faceted Wurtzite‐Type ZnS Single‐Crystalline Nanotubes with Hexagonal Cross‐Sections , 2005 .

[55]  Qingsheng Wu,et al.  Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants , 2005 .

[56]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[57]  Kai Wu,et al.  As a whole: crystalline zinc aluminate nanotube array--nanonet. , 2005, Journal of the American Chemical Society.

[58]  C. Balasubramanian,et al.  Experimental imaging of silicon nanotubes , 2005 .

[59]  Jung Hee Cho,et al.  Single-Crystalline ZnO Microtubes Formed by Coalescence of ZnO Nanowires Using a Simple Metal-Vapor Deposition Method , 2005 .

[60]  Junqing Hu,et al.  Single‐Crystalline, Submicrometer‐Sized ZnSe Tubes , 2005 .

[61]  Y.-W. Chen,et al.  Self‐Assembled Silicon Nanotubes Grown from Silicon Monoxide , 2005 .

[62]  Zhong Lin Wang Self-assembled nanoarchitectures of polar nanobelts/nanowires , 2005 .

[63]  X. Fang,et al.  Formation and Optical Properties of Thin and Wide Tin-doped ZnO Nanobelts , 2005 .

[64]  Yan Li,et al.  Fabrication of ZnO nanorods and nanotubes in aqueous solutions , 2005 .

[65]  Haidong Yu,et al.  A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. , 2005, Journal of the American Chemical Society.

[66]  Y. Bando,et al.  Single‐Crystalline AlN Nanotubes with Carbon‐Layer Coatings on the Outer and Inner Surfaces via a Multiwalled‐Carbon‐Nanotube‐Template‐Induced Route , 2005 .

[67]  Lide Zhang,et al.  Origin of the green photoluminescence from zinc sulfide nanobelts , 2004 .

[68]  Y. Bando,et al.  Growth of Single‐Crystal Indium Nitride Nanotubes and Nanowires by a Controlled‐Carbonitridation Reaction Route , 2004 .

[69]  A. Govindaraj,et al.  InN nanocrystals, nanowires, and nanotubes. , 2004, Small.

[70]  Junqing Hu,et al.  Sn-filled single-crystalline wurtzite-type ZnS nanotubes. , 2004, Angewandte Chemie.

[71]  Zheng Xu,et al.  Microwave-assisted template synthesis of an array of CdS nanotubes , 2004 .

[72]  Y. Bando,et al.  Growth of Single‐Crystalline Cubic GaN Nanotubes with Rectangular Cross‐Sections , 2004 .

[73]  H. Cheng,et al.  Micelle‐Mediated Synthesis of Single‐Crystalline Selenium Nanotubes , 2004 .

[74]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[75]  Longwei Yin,et al.  A Two‐Stage Route to Coaxial Cubic‐Aluminum‐Nitride–Boron‐ Nitride Composite Nanotubes , 2004 .

[76]  Junqing Hu,et al.  The First Template‐Free Growth of Crystalline Silicon Microtubes , 2004 .

[77]  Y. Bando,et al.  Indium-assisted synthesis on GaN nanotubes , 2004 .

[78]  Xiangyang Ma,et al.  Synthesis of CdS nanotubes by chemical bath deposition , 2004 .

[79]  Shui-Tong Lee,et al.  Zinc Selenide Nanoribbons and Nanowires , 2004 .

[80]  Chunrui Wang,et al.  Excitons and surface luminescence of CdS nanoribbons , 2004 .

[81]  Xian‐Wen Wei,et al.  Surfactant-free route to hexagonal CdS nanotubes under ultrasonic irradiation in aqueous solution at room temperature , 2004 .

[82]  Z. Tian,et al.  Rational Design and Fabrication of ZnO Nanotubes from Nanowire Templates in a Microwave Plasma System , 2003 .

[83]  W. Sigmund,et al.  Synthesis of hierarchical zinc oxide nanotubes , 2003 .

[84]  Qingsheng Wu,et al.  Inducing synthesis of CdS nanotubes by PTFE template , 2003 .

[85]  K. Hirao,et al.  Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates , 2003 .

[86]  S. T. Lee,et al.  Silicon-silica nanowires, nanotubes, and biaxial nanowires: inside, outside, and side-by-side growth of silicon versus silica on zeolite. , 2003, Inorganic chemistry.

[87]  Xizhang Wang,et al.  Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. , 2003, Journal of the American Chemical Society.

[88]  Junqing Hu,et al.  Gallium nitride nanotubes by the conversion of gallium oxide nanotubes. , 2003, Angewandte Chemie.

[89]  B. N. Yoon,et al.  Synthesis of Silicon Nanotubes on Porous Alumina Using Molecular Beam Epitaxy , 2003 .

[90]  Theresa S. Mayer,et al.  Templated Surface Sol–Gel Synthesis of SiO2 Nanotubes and SiO2‐Insulated Metal Nanowires , 2003 .

[91]  Lide Zhang,et al.  A Two‐Step Route to Self‐Assembly of CdS Nanotubes via Electrodeposition and Dissolution , 2003 .

[92]  Dmitri Golberg,et al.  Single‐Crystalline In2O3 Nanotubes Filled with In , 2003 .

[93]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[94]  Deyu Li,et al.  Fabrication of silica nanotube arrays from vertical silicon nanowire templates. , 2003, Journal of the American Chemical Society.

[95]  Y. Bando,et al.  ZnS-Zn nanocables and ZnS nanotubes. , 2003, Chemical communications.

[96]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[97]  E. Bakkers,et al.  Synthesis of InP nanotubes. , 2003, Journal of the American Chemical Society.

[98]  Yoshio Bando,et al.  Growth and optical properties of single-crystal tubular ZnO whiskers , 2003 .

[99]  Shui-Tong Lee,et al.  Hydrogen‐Assisted Thermal Evaporation Synthesis of ZnS Nanoribbons on a Large Scale , 2003 .

[100]  Shui-Tong Lee,et al.  Fabrication of Germanium‐Filled Silica Nanotubes and Aligned Silica Nanofibers , 2003 .

[101]  Yi Xie,et al.  In situ micelle–template–interface reaction route to CdS nanotubes and nanowires , 2002 .

[102]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[103]  Y. Qian,et al.  Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature , 2002 .

[104]  C. Balasubramanian,et al.  Field emission from open ended aluminum nitride nanotubes , 2002 .

[105]  Yoshio Bando,et al.  Carbon nanothermometer containing gallium , 2002, Nature.

[106]  Chunhua Yan,et al.  A simple route towards tubular ZnO. , 2002, Chemical communications.

[107]  Sten-Eric Lindquist,et al.  Three-dimensional array of highly oriented crystalline ZnO microtubes , 2001 .

[108]  S. T. Lee,et al.  Free-standing single crystal silicon nanoribbons. , 2001, Journal of the American Chemical Society.

[109]  L. Dloczik,et al.  Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns , 2001 .

[110]  Yiying Wu,et al.  Melting and Welding Semiconductor Nanowires in Nanotubes , 2001 .

[111]  M. Nath,et al.  Surfactant-assisted synthesis of semiconductor nanotubes and nanowires , 2001 .

[112]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[113]  Ning Wang,et al.  Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition , 2000 .

[114]  Deliang Wang,et al.  Growth of hexagonal GaN on Si(111) coated with a thin flat SiC buffer layer , 2000 .

[115]  Chia-Chun Chen,et al.  Large‐Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires , 2000 .

[116]  T. Prevenslik Acoustoluminescence and sonoluminescence , 2000 .

[117]  P. Calandra,et al.  Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy , 1999 .

[118]  Shui-Tong Lee,et al.  Diameter modification of silicon nanowires by ambient gas , 1999 .

[119]  Robert Elliman,et al.  Reversible charging effects in SiO2 films containing Si nanocrystals , 1999 .

[120]  G. Siuzdak,et al.  Desorption–ionization mass spectrometry on porous silicon , 1999, Nature.

[121]  Hui Yang,et al.  Stability investigation of cubic GaN films grown by metalorganic chemical vapor deposition on GaAs (001) , 1999 .

[122]  P. M. Amirtharaj,et al.  Photoluminescence Quenching in Si1-xGex/Si Multiple Quantum Wells Grown With Atomic Hydrogen , 1999 .

[123]  Ning Wang,et al.  Si nanowires grown from silicon oxide , 1999 .

[124]  M. Terrones,et al.  Electrochemical formation of novel nanowires and their dynamic effects , 1998 .

[125]  S. Fan,et al.  Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction , 1997 .

[126]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[127]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[128]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[129]  E. Schlam Electroluminescent phosphors , 1973 .

[130]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[131]  S. Brenner,et al.  Mechanism of whisker growth—III nature of growth sites , 1956 .

[132]  G. Sears A mechanism of whisker growth , 1955 .

[133]  G. W Sears,et al.  A growth mechanism for mercury whiskers , 1955 .

[134]  C. Rao,et al.  Use of amorphous carbon nanotube brushes as templates to fabricate GaN nanotube brushes and related materials , 2007 .

[135]  Yan Li,et al.  Sacrificial template growth of CdS nanotubes from Cd(OH) 2 nanowires , 2006 .

[136]  Xiaoping Shen,et al.  Fabrication of well-aligned CdS nanotubes by CVD-template method , 2005 .

[137]  Xiaosheng Fang,et al.  Temperature‐Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders , 2005 .

[138]  Junqing Hu,et al.  Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates. , 2004, Angewandte Chemie.

[139]  Shui-Tong Lee,et al.  Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes , 2003 .

[140]  Chun-Hua Yan,et al.  ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution , 1999 .

[141]  W. Ji,et al.  Characterization of ZnS Nanoparticles Prepared by New Route , 1999 .

[142]  H. Taniguchi,et al.  Development of translucent aluminum nitride ceramics , 1989 .