Particle metropolis hastings using Langevin dynamics
暂无分享,去创建一个
Johan Dahlin | Fredrik Lindsten | Thomas B. Schön | Thomas Bo Schön | F. Lindsten | J. Dahlin | Thomas B. Schön
[1] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[2] Mikkel N. Schmidt. Function factorization using warped Gaussian processes , 2009, ICML '09.
[3] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[4] A. Doucet,et al. Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods , 2010, 1011.2437.
[5] H. Ishwaran. Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks , 1999 .
[6] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[7] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[8] Fredrik Lindsten,et al. On the use of backward simulation in the particle Gibbs sampler , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[9] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[10] Fredrik Lindsten,et al. Ancestor Sampling for Particle Gibbs , 2012, NIPS.
[11] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[12] M. Beaumont. Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.
[13] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[14] A. Kennedy. The theory of hybrid stochastic algorithms , 1990 .
[15] Creutz. Global Monte Carlo algorithms for many-fermion systems. , 1988, Physical review. D, Particles and fields.
[16] Noelle Foreshaw. Options… , 2010 .
[17] L. Dousset. Understanding Human Relations (Kinship Systems) , 2011 .
[18] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[19] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[20] D. Pierre. Forward Smoothing Using Sequential Monte Carlo , 2009 .
[21] Sumeetpal S. Singh,et al. Novel particle filter methods for recursive and batch maximum likelihood parameter estimation in general states space models , 2005 .
[22] S. Chib. Likelihood based inference for diffusion driven state space models , 2006 .
[23] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[24] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[25] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[26] W. Marsden. I and J , 2012 .
[27] Thomas B. Schön,et al. Estimation of general nonlinear state-space systems , 2010, 49th IEEE Conference on Decision and Control (CDC).
[28] Simon J. Godsill,et al. Improved Particle Approximations to the Joint Smoothing Distribution Using Markov Chain Monte Carlo , 2013, IEEE Transactions on Signal Processing.
[29] Aurélien Garivier,et al. Sequential Monte Carlo smoothing for general state space hidden Markov models , 2011, 1202.2945.
[30] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[31] F Gustafsson,et al. Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.
[32] Sumeetpal S. Singh,et al. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .
[33] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[34] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[35] Matthew Charles Higgs,et al. Approximate inference for state-space models , 2011 .
[36] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.