Recursive subspace identification with prior information using the constrained least squares approach

Abstract It is essential to develop high quality models for process control and other applications. The incorporation of prior information in subspace identification has been investigated to obtain improved model quality. One of the recent developments incorporates the prior information using the constrained least squares (CLS). In many online applications, the amount of process data for model identification grows with time, and it is therefore necessary to develop a recursive algorithm for online identification of process models and to address the time-varying characteristics of the systems. In this paper, a recursive subspace identification algorithm incorporating prior information is developed using the constrained recursive least squares (CRLS). It is shown via a simulation example that the state space model identified using the proposed algorithm possesses improved accuracy.

[1]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[2]  Stéphane Lecoeuche,et al.  Propagator-based methods for recursive subspace model identification , 2008, Signal Process..

[3]  Hidenori Kimura,et al.  A RECURSIVE 4SID FROM THE INPUT‐OUTPUT POINT OF VIEW , 1999 .

[4]  D.S. Bernstein,et al.  Subspace identification with lower bounded modal frequencies , 2004, Proceedings of the 2004 American Control Conference.

[5]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[6]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[7]  T. Sugie,et al.  Subspace system identification considering both noise attenuation and use of prior knowledge , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[8]  Sabine Van Huffel,et al.  Block-row Hankel weighted low rank approximation , 2006, Numer. Linear Algebra Appl..

[9]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[10]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[11]  S. O. Reza Moheimani,et al.  Estimation of phase constrained MIMO transfer functions with application to flexible structures with , 2005 .

[12]  Pavel Trnka,et al.  Subspace like identification incorporating prior information , 2009, Autom..

[13]  Vira Chankong,et al.  Parameter-Constrained Adaptive Control , 1997 .

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  Henrik Sandberg,et al.  On subspace identification of cascade structured systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[16]  Michel Verhaegen,et al.  Recursive subspace identification of linear and non-linear Wiener state-space models , 2000, Autom..

[17]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[18]  Lennart Ljung,et al.  Handling Certain Structure Information in Subspace Identification , 2009 .

[19]  Ibrahim Ziedan,et al.  Brief paper - Improved subspace identification with prior information using constrained least squares , 2011 .

[20]  Yucai Zhu Multivariable process identification for mpc: the asymptotic method and its applications , 1998 .

[21]  Hidenori Kimura,et al.  Recursive 4SID algorithms using gradient type subspace tracking , 2002, Autom..

[22]  S. Canu,et al.  New methods for the identification of a stable subspace model for dynamical systems , 2008, 2008 IEEE Workshop on Machine Learning for Signal Processing.

[23]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..

[24]  Miroslav Kárný Quantification of prior knowledge about global characteristics of linear normal model , 1984, Kybernetika.

[25]  Alessandro Chiuso,et al.  The role of vector autoregressive modeling in predictor-based subspace identification , 2007, Autom..

[26]  Dennis S. Bernstein,et al.  Subspace identification with guaranteed stability using constrained optimization , 2003, IEEE Trans. Autom. Control..

[27]  Akira Sano,et al.  Trends in systems and signals , 2005 .

[28]  Ahmed Mahmoud Abdelrahman Elanany Improved subspace identication with prior information using constrained least-squares , 2011 .

[29]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[30]  Tor Arne Johansen,et al.  Constrained and Regularized System Identification , 1997 .