Stable droplets and nucleation in asymmetric bistable nonlinear optical systems

The existence and stability properties of localized structures in nonlinear optical cavities with slightly non-equivalent homogeneous solutions and displaying a modulational instability of flat fronts are investigated. We present a new type of stable localized structures in the regime of formation of labyrinthine patterns based on the balance between the curvature and the asymmetry effects.

[1]  G. Oppo,et al.  Stochastic resonance in the presence of spatially localized structures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  B. Malomed,et al.  Solitary Pulses and Periodic Waves in the Parametrically Driven Complex Ginzburg-Landau Equation , 2003, nlin/0304020.

[3]  L. Lugiato Introduction to the feature section on cavity solitons: An overview , 2003 .

[4]  P. Colet,et al.  Stable droplets and dark-ring cavity solitons in nonlinear optical devices , 2003 .

[5]  E. Wolf,et al.  Singular Optics: Singular Optics WithPolychromatic Light , 2002 .

[6]  W. Firth,et al.  Two-dimensional clusters of solitary structures in driven optical cavities. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M. Segev From the Guest Editor--Solitons: A Universal Phenomenon of Self-Trapped Wave Packets , 2002 .

[8]  William J. Firth,et al.  Cavity and Feedback Solitons , 2002 .

[9]  I. V. Barashenkov,et al.  Two- and three-dimensional oscillons in nonlinear faraday resonance. , 2001, Physical review letters.

[10]  M San Miguel,et al.  Stable droplets and growth laws close to the modulational instability of a domain wall. , 2001, Physical review letters.

[11]  W. Firth,et al.  Characterization, dynamics and stabilization of diffractive domain walls and dark ring cavity solitons in parametric oscillators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  U. Peschel,et al.  Universal criterion and amplitude equation for a nonequilibrium Ising-Bloch transition. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  G. D. de Valcárcel,et al.  Vectorial Kerr-cavity solitons. , 2000, Optics letters.

[14]  P. Coullet,et al.  Stable static localized structures in one dimension , 2000, Physical review letters.

[15]  M. S. Miguel,et al.  Self-similar domain growth, localized structures, and labyrinthine patterns in vectorial Kerr resonators , 1999, patt-sol/9908001.

[16]  V. Sánchez-Morcillo,et al.  Stability of localized structures in the Swift-Hohenberg equation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  D. Leduc,et al.  Striped and circular domain walls in the DOPO , 1999 .

[18]  W. Firth,et al.  From domain walls to localized structures in degenerate optical parametric oscillators , 1999 .

[19]  Kestutis Staliunas,et al.  PATTERN FORMATION AND LOCALIZED STRUCTURES IN DEGENERATE OPTICAL PARAMETRIC MIXING , 1998 .

[20]  U. Peschel,et al.  Formation, motion, and decay of vectorial cavity solitons , 1998 .

[21]  M. Hoyuelos,et al.  Polarization Patterns in Kerr Media , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[22]  Kestutis Staliunas,et al.  Spatial-localized structures in degenerate optical parametric oscillators , 1998 .

[23]  S. Longhi Localized structures in optical parametric oscillation , 1997 .

[24]  Valery Petrov,et al.  Resonant pattern formation in achemical system , 1997, Nature.

[25]  A Sheppard,et al.  Stable topological spatial solitons in optical parametric oscillators. , 1997, Optics letters.

[26]  E. Meron,et al.  On the origin of traveling pulses in bistable systems , 1997, patt-sol/9703007.

[27]  Ouchi,et al.  Phase ordering kinetics in the Swift-Hohenberg equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Firth,et al.  Optical bullet holes: Robust controllable localized states of a nonlinear cavity. , 1996, Physical review letters.

[29]  E. Wright,et al.  Polarisation patterns in a nonlinear cavity , 1994 .

[30]  R. Lefever,et al.  Localized structures and localized patterns in optical bistability. , 1994, Physical review letters.

[31]  P. Coullet,et al.  Dynamics of Bloch Walls in a Rotating Magnetic Field: A Model , 1991 .