Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum

[1]  Raymond E. Arvidson,et al.  In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars , 2006 .

[2]  Richard V. Morris,et al.  The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars , 2005 .

[3]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[4]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[5]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[6]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[7]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[8]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[9]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[10]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[11]  M. Darby Dyar,et al.  Spectroscopic evidence for hydrous iron sulfate in the Martian soil , 2004 .

[12]  James M. Dohm,et al.  Inhibition of carbonate synthesis in acidic oceans on early Mars , 2004, Nature.

[13]  Brian M. Hynek,et al.  Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani , 2004, Nature.

[14]  R. Rieder,et al.  Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer , 2004, Science.

[15]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[16]  Udo Schwertmann,et al.  Thermodynamics of iron oxides: Part III. Enthalpies of formation and stability of ferrihydrite (~Fe( , 2004 .

[17]  C. Christov Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na+K+Mg+Cl+SO4+H2O} system at T=298.15 K , 2004 .

[18]  G. Marion,et al.  Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars , 2003 .

[19]  J. Donald Rimstidt,et al.  Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact , 2003 .

[20]  David C. Catling,et al.  The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars , 2003 .

[21]  A. Navrotsky,et al.  Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites , 2003 .

[22]  M. Hodson,et al.  Fe-sulphate-rich evaporative mineral precipitates from the Río Tinto, southwest Spain , 2003, Mineralogical Magazine.

[23]  C. Christov THERMODYNAMIC STUDY OF QUATERNARY SYSTEMS WITH PARTICIPATION OF AMMONIUM AND SODIUM ALUMS AND CHROMIUM ALUMS , 2002 .

[24]  R. V. Demicco,et al.  Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions , 2001, Science.

[25]  C. Christov Thermodynamic study of the KMgAlClSO4H2O system at the temperature 298.15 K , 2001 .

[26]  R. V. Demicco,et al.  Evaluating seawater chemistry from fluid inclusions in halite: Examples from modern marine and nonmarine environments , 2001 .

[27]  F. Frau The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications , 2000, Mineralogical Magazine.

[28]  K. Keil,et al.  Mixing relationships in the Martian regolith and the composition of globally homogeneous dust , 2000 .

[29]  S. McLennan chemical composition of martian soil and rocks: Complex mixing and sedimentary transport , 2000 .

[30]  D. Nordstrom,et al.  Negative pH and Extremely Acidic Mine Waters from Iron Mountain, California , 2000 .

[31]  J. Jambor,et al.  Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide. , 1998, Chemical reviews.

[32]  D. Nordstrom TRACE METAL SPECIATION IN NATURAL WATERS: COMPUTATIONAL VS. ANALYTICAL , 1996 .

[33]  Jerry M. Bigham,et al.  SCHWERTMANNITE AND THE CHEMICAL MODELING OF IRON IN ACID SULFATE WATERS , 1996 .

[34]  V B Parker,et al.  Thermodynamic Properties of the Aqueous Ions (2+ and 3+) of Iron and the Key Compounds of Iron , 1995 .

[35]  R. Burns Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars , 1993 .

[36]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[37]  D. T. Long,et al.  Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia , 1992 .

[38]  E. Reardon Ion interaction parameters for aluminum sulfate and application to the prediction of metal sulfate solubility in binary salt systems , 1988 .

[39]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[40]  E. Reardon,et al.  Modelling chemical equilibria of acid mine-drainage: The FeSO4-H2SO4-H2O system , 1987 .

[41]  D. Nordstrom,et al.  Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California. , 1987, Environmental science & technology.

[42]  F. Millero,et al.  The oxidation kinetics of Fe(II) in seawater , 1987 .

[43]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[44]  J. W. Ball,et al.  Redox Equilibria of Iron in Acid Mine Waters , 1979 .

[45]  D. Whittemore,et al.  Ferric oxyhydroxide microparticles in water , 1974, Environmental health perspectives.

[46]  D. Langmuir Particle size effect on the reaction goethite = hematite + water , 1971 .

[47]  D. Whittemore,et al.  Variations in the Stability of Precipitated Ferric Oxyhydroxides , 1971 .

[48]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[49]  L. Hepler,et al.  Electrode potentials and thermodynamic data for aqueous ions. Copper, zinc, cadmium, iron, cobalt, and nickel , 1968 .

[50]  Walter J. Murphy,et al.  ADVANCES IN CHEMISTRY SERIES: Numbers 15 and 17 Demonstrate Rapidly Crowing Interest in Documentation; International Conference To Be Held in 1958 , 1956 .

[51]  P. Persson,et al.  Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties , 2005 .

[52]  K. Herkenhoff,et al.  Sulfate Deposition in Regolith Exposed in Trenches on the Plains Between the Spirit Landing Site and Columbia Hills in Gusev Crater, Mars , 2005 .

[53]  D. Ming,et al.  Geochemical and Mineralogical Indicators for Aqueous Processes on the West Spur of the Columbia Hills in Gusev Crater , 2005 .

[54]  I. Chou,et al.  Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals , 2002 .

[55]  D. Nordstrom,et al.  Metal-sulfate Salts from Sulfide Mineral Oxidation , 2000 .

[56]  D. Nordstrom,et al.  Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters , 2000 .

[57]  D. Blowes,et al.  Predicting Sulfate-Mineral Solubility in Concentrated Waters , 2000 .

[58]  D. Nordstrom,et al.  Geochemistry of acid mine waters , 1999 .

[59]  D. Nordstrom,et al.  Geochemical modeling of water-rock interactions in mining environments , 1997 .

[60]  Craig M. Bethke,et al.  Geochemical reaction modeling , 1996 .

[61]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[62]  L. Hardie On the Significance of Evaporites , 1991 .

[63]  David L. Parkhurst,et al.  A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines , 1988 .

[64]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[65]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .

[66]  R. Garrels,et al.  Origin of the Chemical Compositions of Some Springs and Lakes , 1967 .