A numerical study of dynamo action as a function of spherical shell geometry
暂无分享,去创建一个
Jonathan M. Aurnou | F. Al-Shamali | M. Heimpel | J. Aurnou | N. Pérez | Moritz Heimpel | Farook Mohammad Al-Shamali | N. Gomez Perez
[1] Johannes Wicht. Inner-core conductivity in numerical dynamo simulations , 2002 .
[2] A. Soward,et al. The onset of thermal convection in a rapidly rotating sphere , 2000, Journal of Fluid Mechanics.
[3] G. Glatzmaier,et al. The geodynamo, past, present and future , 2001 .
[4] Masaru Kono,et al. Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo , 1999 .
[5] S. Labrosse. Thermal and magnetic evolution of the Earth’s core , 2003 .
[6] S. Kida,et al. Equatorial magnetic dipole field intensification by convection vortices in a rotating spherical shell , 2002 .
[7] S. Kida,et al. Dynamo mechanism in a rotating spherical shell: competition between magnetic field and convection vortices , 2002, Journal of Fluid Mechanics.
[8] J. Connerney,et al. Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .
[9] Jean-Paul Poirier,et al. The age of the inner core , 2001 .
[10] P. Roberts,et al. Definition of the Rayleigh number for geodynamo simulation , 2001 .
[11] B. Buffett. The Thermal State of Earth's Core , 2003, Science.
[12] C. Russell,et al. Ganymede's magnetosphere: Magnetometer overview , 1998 .
[13] N. Ness,et al. The magnetic field of Mercury, 1 , 1975 .
[14] G. Schubert,et al. Effects of an Electrically Conducting Inner Core on Planetary and Stellar Dynamos , 2001 .
[15] D. Stevenson. Planetary magnetic fields , 2003 .
[16] Sean C. Solomon,et al. Mercury: the enigmatic innermost planet , 2003 .
[17] Jeremy Bloxham,et al. An Earth-like numerical dynamo model , 1997, Nature.
[18] F. Busse,et al. Regular and chaotic spherical dynamos , 2000 .
[19] Gary A. Glatzmaier,et al. Numerical Simulations of Stellar Convective Dynamos , 1984 .
[20] Gary A. Glatzmaier,et al. Numerical Simulations of Stellar Convective Dynamos. I. The Model and Method , 1984 .
[21] P. Olson,et al. Planforms in Thermal Convection With Internal Heat Sources at Large Rayleigh and Prandtl Numbers , 1990 .
[22] Ulrich R. Christensen,et al. Numerical modelling of the geodynamo: a systematic parameter study , 1999 .
[23] Geoffrey D. Price,et al. The influence of potassium on core and geodynamo evolution , 2003 .
[24] J. Aubert,et al. Axial vs. equatorial dipolar dynamo models with implications for planetary magnetic fields , 2004 .
[25] C. Hale. The intensity of the geomagnetic field at 3.5 Ga: paleointensity results from the Komati Formation, Barberton Mountain Land, South Africa , 1987 .
[26] Carsten Kutzner,et al. From stable dipolar towards reversing numerical dynamos , 2002 .
[27] A. Woods,et al. On the thermal evolution of the Earth's core , 1996 .
[28] H. K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids , 1978 .
[29] Busse,et al. Hemispherical dynamos generated by convection in rotating spherical shells , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[30] J. Valet. Time variations in geomagnetic intensity , 2003 .
[31] F. Al-Shamali,et al. Varying the spherical shell geometry in rotating thermal convection , 2004 .
[32] D. Fearn,et al. The influence of Rayleigh number, azimuthal wavenumber and inner core radius on 2- D hydromagnetic dynamos , 2000 .
[33] F. Busse,et al. Convection-driven quadrupolar dynamos in rotating spherical shells. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[34] R. Phillips,et al. Internal and tectonic evolution of Mercury , 2003 .
[35] B. Buffett,et al. The strength and efficiency of thermal and compositional convection in the geodynamo , 1995 .
[36] G. Schubert,et al. Sulfur in Mercury's Core? , 2001 .
[37] S. J. Drew. Thermal convection in a spherical shell with a variable radius ratio , 1991 .
[38] U. Christensen,et al. Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration , 1999 .
[39] G. Glatzmaier,et al. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle , 1995 .
[40] S. Stanley,et al. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields , 2004, Nature.
[41] Gary A. Glatzmaier,et al. Geodynamo Simulations—How Realistic Are They? , 2002 .
[42] M. Gillan,et al. Gross thermodynamics of two-component core convection , 2004 .