First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at z∼4: Constraints on Matter Density Fluctuations at High Redshift.

We report the first detection of the dark matter distribution around Lyman break galaxies (LBGs) at high redshift through the cosmic microwave background (CMB) lensing measurements with the public Planck PR3 κ map. The LBG sample consists of 1 473 106 objects with the median redshift of z∼4 that are identified in a total area of 305  deg^{2} observed by the Hyper Suprime-Cam Strategic Survey Program survey. After careful investigations of systematic uncertainties, such as contamination from foreground galaxies and cosmic infrared background, we obtain the significant detection of the CMB lensing signal at 5.1σ that is dominated by 2-halo term signals of the LBGs. Fitting a simple model consisting of the Navarro-Frenk-White profile and the linear-bias model, we obtain the typical halo mass of M_{h}=2.9_{-2.5}^{+9.5}×10^{11}  h^{-1} M_{⊙}. Combining the CMB lensing and galaxy-galaxy clustering signals on the large scales, we demonstrate the first cosmological analysis at z∼4 that constrains (Ω_{m0},σ_{8}). We find that our constraint on σ_{8} is roughly consistent with the Planck cosmology, while this σ_{8} constraint is lower than the Planck cosmology over the 1σ level. This study opens up a new window for constraining cosmological parameters at high redshift by the combination of CMB and high-z galaxies, as well as studying the interplay between galaxy evolution and large-scale structure at such high redshift, by upcoming CMB and optical and near-infrared imaging surveys.

[1]  S. Arnouts,et al.  GOLDRUSH. IV. Luminosity Functions and Clustering Revealed with ∼4,000,000 Galaxies at z ∼ 2–7: Galaxy–AGN Transition, Star Formation Efficiency, and Implication for Evolution at z > 10 , 2021, The Astrophysical Journal Supplement Series.

[2]  A. Melchiorri,et al.  In the realm of the Hubble tension—a review of solutions , 2021, Classical and Quantum Gravity.

[3]  H. Hoekstra,et al.  KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints , 2020, Astronomy & Astrophysics.

[4]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: DR4 maps and cosmological parameters , 2020, Journal of Cosmology and Astroparticle Physics.

[5]  K. Umetsu Cluster–galaxy weak lensing , 2020, 2007.00506.

[6]  Tristan L. Smith,et al.  Clustering and halo abundances in early dark energy cosmological models , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  A. Hopkins,et al.  GAMA + KiDS: empirical correlations between halo mass and other galaxy properties near the knee of the stellar-to-halo mass relation , 2020, Monthly Notices of the Royal Astronomical Society.

[8]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: a CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  A. Leauthaud,et al.  Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data , 2019, Publications of the Astronomical Society of Japan.

[10]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[11]  Mark Halpern,et al.  CMB-S4 Science Case, Reference Design, and Project Plan , 2019, 1907.04473.

[12]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[13]  M. White,et al.  Cosmology with dropout selection: straw-man surveys & CMB lensing , 2019, Journal of Cosmology and Astroparticle Physics.

[14]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[15]  Andrew P. Hearin,et al.  Weak lensing reveals a tight connection between dark matter halo mass and the distribution of stellar mass in massive galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[17]  Fred Moolekamp,et al.  An Overview of the LSST Image Processing Pipelines , 2018, 1812.03248.

[18]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[19]  W. Tan,et al.  GOLDRUSH , 2018, Proceedings of the VLDB Endowment.

[20]  J. Tinker,et al.  The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.

[21]  A. Leauthaud,et al.  Weak lensing shear calibration with simulations of the HSC survey , 2017, Monthly Notices of the Royal Astronomical Society.

[22]  Yen-Ting Lin,et al.  GOLDRUSH. III. A systematic search for protoclusters at z ∼ 4 based on the >100 deg2 area , 2017, 1708.09421.

[23]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[24]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[25]  Satoshi Miyazaki,et al.  The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.

[26]  Satoshi Miyazaki,et al.  GOLDRUSH - II. Clustering of galaxies at z ∼ 4–6 revealed with the half-million dropouts over the 100 deg2 area corresponding to 1 Gpc3 , 2017, 1704.06535.

[27]  Yukiko Kamata,et al.  First data release of the Hyper Suprime-Cam Subaru Strategic Program , 2017, 1702.08449.

[28]  Yukiko Kamata,et al.  Hyper Suprime-Cam: System design and verification of image quality , 2018 .

[29]  O. Ilbert,et al.  The Galaxy–Halo Connection for as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes , 2017, 1712.03844.

[30]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[31]  Mohammad Akhlaghi,et al.  Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at $z \sim 4-7$ Derived with the Half-Million Dropouts on the 100 deg$^2$ Sky , 2017, 1704.06004.

[32]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[33]  Masayuki Tanaka,et al.  The Galaxy–Halo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields , 2016, 1612.06869.

[34]  Naoyuki Tamura,et al.  The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ∼ 1.4 , 2015, 1511.08083.

[35]  M.Vaccari,et al.  The galaxy–halo connection in the VIDEO survey at 0.5 < z < 1.7 , 2015, 1511.05476.

[36]  K. Glazebrook,et al.  The Subaru FMOS Galaxy Redshift Survey (FastSound). II. The Emission Line Catalog and Properties of Emission Line Galaxies , 2015, 1504.05592.

[37]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[38]  B. Garilli,et al.  The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field , 2015, 1502.02867.

[39]  O. Fèvre,et al.  Probing the galaxy–halo connection in UltraVISTA to z ∼ 2 , 2014, 1411.4983.

[40]  B. J.,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES I: MEASUREMENTS , 2015 .

[41]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[42]  J. Brownstein,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.

[43]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure , 2013, 1309.5556.

[44]  G. Zamorani,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - Galaxy clustering and redshift-space distortions at z ≃ 0.8 in the first data release , 2013, 1303.2622.

[45]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[46]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[47]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[48]  Matthew Colless,et al.  The 6dF Galaxy Survey: z≈ 0 measurements of the growth rate and σ8: 6dFGS: z≈ 0 measurements of fσ8 and σ8 , 2012 .

[49]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[50]  R. Mandelbaum,et al.  Photometric redshift requirements for lens galaxies in galaxy–galaxy lensing analyses , 2011, 1107.1395.

[51]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[52]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[53]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[54]  R. Mandelbaum,et al.  Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering , 2009, 0911.4973.

[55]  L. Waerbeke,et al.  CARS: the CFHTLS-Archive-Research Survey - II. Weighing dark matter halos of Lyman-break galaxies at z = 3–5 , 2009, 0903.3951.

[56]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[57]  J. Brinkmann,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005, astro-ph/0501201.

[58]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: spherical harmonics analysis of fluctuations in the final catalogue , 2004, astro-ph/0406513.

[59]  B. Jain,et al.  The three‐point correlation function in cosmology , 2002, astro-ph/0209167.

[60]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[61]  G. Lake,et al.  The Structure of Cold Dark Matter Halos , 1998 .

[62]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[63]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.