Surface reflectance of Mars observed by CRISM/MRO: 1. Multi‐angle Approach for Retrieval of Surface Reflectance from CRISM observations (MARS‐ReCO)

This article addresses the correction for aerosol effects in near‐simultaneous multi‐angle observations acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter. In the targeted mode, CRISM senses the surface of Mars using 11 viewing angles, which allow it to provide unique information on the scattering properties of surface materials. In order to retrieve these data, however, appropriate strategies must be used to compensate the signal sensed by CRISM for aerosol contribution. This correction is particularly challenging as the photometric curve of these suspended particles is often correlated with the also anisotropic photometric curve of materials at the surface. This article puts forward an innovative radiative transfer‐based method named Multi‐angle Approach for Retrieval of Surface Reflectance from CRISM Observations (MARS‐ReCO). The proposed method retrieves photometric curves of surface materials in reflectance units after removing aerosol contribution. MARS‐ReCO represents a substantial improvement regarding previous techniques as it takes into consideration the anisotropy of the surface, thus providing more realistic surface products. Furthermore, MARS‐ReCO is fast and provides error bars on the retrieved surface reflectance. The validity and accuracy of MARS‐ReCO is explored in a sensitivity analysis based on realistic synthetic data. According to experiments, MARS‐ReCO provides accurate results (up to 10% reflectance error) under favorable acquisition conditions. In the companion article, photometric properties of Martian materials are retrieved using MARS‐ReCO and validated using in situ measurements acquired during the Mars Exploration Rovers mission.

[1]  J. Fernando,et al.  Surface reflectance of Mars observed by CRISM/MRO: 2. Estimation of surface photometric properties in Gusev Crater and Meridiani Planum , 2013, 1303.4549.

[2]  C. Tucker,et al.  Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction , 2012 .

[3]  S. Murchie,et al.  Retrieval of Atmospherically Corrected CRISM Spectra Using Radiative Transfer Modeling , 2012 .

[4]  Patrick Pinet,et al.  An experimental study of Hapke's modeling of natural granular surface samples , 2011 .

[5]  Linda B. Hayden,et al.  Compact reconnaissance imaging spectrometer for MARS (CRISM) , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables , 2011 .

[7]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[8]  Sylvain Douté,et al.  Retrieving Mars aerosol optical depth from CRISM/MRO imagery , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[9]  M. Mellon,et al.  Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations , 2010 .

[10]  A. Kokhanovsky,et al.  Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign , 2009 .

[11]  Sylvain Douté,et al.  Retrieving Mars surface reflectance from OMEGA/MEX imagery , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[12]  Michael D. Smith THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008 , 2009 .

[13]  Jean-Pierre Bibring,et al.  Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits , 2009, 1103.3426.

[14]  Patrick C. McGuire,et al.  An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data , 2009, 0903.3672.

[15]  M. J. Wolff,et al.  Atmospheric Modeling of the Martian Polar Regions: One Mars Year of CRISM EPF Observations of the South Pole , 2009 .

[16]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[17]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide , 2009 .

[18]  F. Scholten,et al.  Gusev photometric variability as seen from orbit by hrsc/mars-express , 2008 .

[19]  P. McClintock Mars: an introduction to its interior, surface and atmosphere. , 2008 .

[20]  Jeffrey R. Johnson,et al.  Surface albedo observations at Gusev Crater and Meridiani Planum, Mars , 2008 .

[21]  Raymond E. Arvidson,et al.  MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars With DISORT-Based Radiative Transfer Modeling: Phase 1—Using Historical Climatology for Temperatures, Aerosol Optical Depths, and Atmospheric Pressures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Y. Langevin,et al.  Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars , 2007, 1103.0384.

[23]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[24]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[25]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit: PANCAM PHOTOMETRY-SPIRIT , 2006 .

[26]  Alexei Lyapustin,et al.  Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces. , 2005, Applied optics.

[27]  Luis Alonso,et al.  A method for the surface reflectance retrieval from PROBA/CHRIS data over land: application to ESA SPARC campaigns , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[29]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[30]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[31]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[32]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[33]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[34]  Y. Knyazikhin,et al.  Green's Function Method for the Radiative Transfer Problem. I. Homogeneous non-Lambertian Surface. , 2001, Applied optics.

[35]  P. Pinet,et al.  Regional Photometry and Spectral Albedo of the Eastern Hemisphere of Mars in the 0.7-1. Micron Domain , 2001 .

[36]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[37]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[38]  Alexei Lyapustin,et al.  Atmospheric and geometrical effects on land surface albedo , 1999 .

[39]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[40]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[41]  P. Pinet,et al.  Near-opposition martian limb-darkening: Quantification and implication for visible-near-infrared bidirectional reflectance studies. , 1995 .

[42]  John V. Martonchik,et al.  Retrieval of Surface Directional Reflectance Properties Using Ground Level Multiangle Measurements , 1994 .

[43]  S. Erard,et al.  Martian Aerosols: Near-Infrared Spectral Properties and Effects on the Observation of the Surface , 1994 .

[44]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[45]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[46]  Y. Langevin,et al.  Martian aerosol properties from the Phobos/ISM experiment , 1991 .

[47]  R. Todd Clancy,et al.  A new look at dust and clouds in the Mars atmosphere: analysis of emission-phase-function sequences from global viking IRTM observations , 1991 .

[48]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[49]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[50]  David J. Diner,et al.  Retrieval of aerosol properties over land using MISR observations , 2009 .

[51]  Nadine G. Barlow,et al.  An Introduction to its Interior, Surface and Atmosphere , 2008 .

[52]  Oleg Korablev,et al.  Open questions on optical properties of dust and the opacity of the Martian atmosphere , 2002 .