Well-Balanced Schemes and Path-Conservative Numerical Methods

Abstract In this chapter we describe a general methodology for developing high-order well-balanced schemes for hyperbolic system with nonconservative products and/or source terms. We briefly recall the Dal Maso–LeFloch–Murat theory to define weak solutions of nonconservative systems and how it has been used to establish the notion of path-conservative schemes. We show that, under this framework, it is possible to extend to the nonconservative case many well-known numerical schemes that are commonly used for system of conservation laws. Moreover, their extension to high order can be done as well. Next the well-balanced property of the proposed methods is analyzed with an illustrative 1d example. Finally, we point out the difficulties related to the right definition of weak solution and the design of numerical schemes converging to them.

[1]  Mario Ricchiuto,et al.  Stabilized residual distribution for shallow water simulations , 2009, J. Comput. Phys..

[2]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[3]  Siddhartha Mishra,et al.  Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form , 2017 .

[4]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[5]  Carlos Parés,et al.  A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport , 2013 .

[6]  J LeVequeRandall Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[7]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[8]  Birte Schmidtmann,et al.  A Hybrid Riemann Solver for Large Hyperbolic Systems of Conservation Laws , 2016, SIAM J. Sci. Comput..

[9]  Carlos Parés,et al.  On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .

[10]  Yulong Xing,et al.  High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms , 2006, J. Comput. Phys..

[11]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[12]  Florian de Vuyst Schémas non-conservatifs et schémas cinétiques pour la simulation numérique d'écoulements hypersoniques non visqueux en déséquilibre thermochimique , 1994 .

[13]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[14]  Enrique D. Fernández Nieto,et al.  Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to the Shallow Water equations , 2004 .

[15]  Manuel Jesús Castro Díaz,et al.  Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes , 2008, J. Comput. Phys..

[16]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[17]  Eleuterio F. Toro,et al.  Centred TVD schemes for hyperbolic conservation laws , 2000 .

[18]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[19]  Carlos Parés,et al.  A Q-SCHEME FOR A CLASS OF SYSTEMS OF COUPLED CONSERVATION LAWS WITH SOURCE TERM. APPLICATION TO A TWO-LAYER 1-D SHALLOW WATER SYSTEM , 2001 .

[20]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[21]  Eleuterio F. Toro,et al.  On some fast well-balanced first order solvers for nonconservative systems , 2009, Math. Comput..

[22]  Mária Lukácová-Medvid'ová,et al.  Well-balanced finite volume evolution Galerkin methods for the shallow water equations , 2015, J. Comput. Phys..

[23]  Manuel Jesús Castro Díaz,et al.  Central Schemes for Nonconservative Hyperbolic Systems , 2012, SIAM J. Sci. Comput..

[24]  Manuel Jesús Castro Díaz,et al.  Entropy Conservative and Entropy Stable Schemes for Nonconservative Hyperbolic Systems , 2013, SIAM J. Numer. Anal..

[25]  José M. Gallardo,et al.  Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case , 2014, J. Comput. Phys..

[26]  Manuel Jesús Castro Díaz,et al.  A HLLC scheme for Ripa model , 2016, Appl. Math. Comput..

[27]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  Philippe G. LeFloch,et al.  Why many theories of shock waves are necessary: kinetic relations for non-conservative systems , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[30]  Manuel Jesús Castro Díaz,et al.  A second order PVM flux limiter method. Application to magnetohydrodynamics and shallow stratified flows , 2014, J. Comput. Phys..

[31]  Lucas O. Müller,et al.  Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties , 2013, J. Comput. Phys..

[32]  Christian Klingenberg,et al.  A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity , 2016 .

[33]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[34]  Philippe G. LeFloch,et al.  Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models , 2007, J. Comput. Phys..

[35]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[36]  Kun Xu,et al.  A gas-kinetic scheme for shallow-water equations with source terms , 2004 .

[37]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[38]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[39]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[40]  M. J. Castro,et al.  FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems , 2010 .

[41]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[42]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[43]  I. Toumi A weak formulation of roe's approximate riemann solver , 1992 .

[44]  Christophe Chalons,et al.  A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations , 2015, Math. Comput..

[45]  A. Chertock,et al.  Solving Two-Mode Shallow Water Equations Using Finite Volume Methods , 2014 .

[46]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[47]  Manuel Jesús Castro Díaz,et al.  Approximate Osher-Solomon schemes for hyperbolic systems , 2016, Appl. Math. Comput..

[48]  Christian Klingenberg,et al.  Well-Balanced Unstaggered Central Schemes for the Euler Equations with Gravitation , 2016, SIAM J. Sci. Comput..

[49]  Laurent Gosse,et al.  Localization effects and measure source terms in numerical schemes for balance laws , 2002, Math. Comput..

[50]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[51]  Manuel Jesús Castro Díaz,et al.  A Class of Incomplete Riemann Solvers Based on Uniform Rational Approximations to the Absolute Value Function , 2014, J. Sci. Comput..

[52]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[53]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[54]  Frédéric Coquel,et al.  Nonlinear projection methods for multi-entropies Navier-Stokes systems , 2007, Math. Comput..

[55]  Manuel Jesús Castro Díaz,et al.  A new Savage-Hutter type model for submarine avalanches and generated tsunami , 2008, J. Comput. Phys..

[56]  L. Gosse A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .

[57]  Sander Rhebergen,et al.  Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations , 2008, J. Comput. Phys..

[58]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[59]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[60]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[61]  Eleuterio F. Toro,et al.  MUSTA: a multi-stage numerical flux , 2006 .

[62]  VIVIEN DESVEAUX,et al.  Well-balanced schemes to capture non-explicit steady states: Ripa model , 2016, Math. Comput..

[63]  J. Greenberg,et al.  Analysis and Approximation of Conservation Laws with Source Terms , 1997 .

[64]  Enrique D. Fernández Nieto,et al.  A family of stable numerical solvers for the shallow water equations with source terms , 2003 .

[65]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[66]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[67]  Manuel Jesús Castro Díaz,et al.  High order exactly well-balanced numerical methods for shallow water systems , 2013, J. Comput. Phys..

[68]  Laurent Gosse,et al.  A Well-Balanced Scheme Using Non-Conservative Products Designed for Hyperbolic Systems of Conservati , 2001 .

[69]  Rémi Abgrall,et al.  Explicit Runge-Kutta residual distribution schemes for time dependent problems: Second order case , 2010, J. Comput. Phys..

[70]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[71]  Carlos Parés,et al.  Relation between PVM schemes and simple Riemann solvers , 2014 .

[72]  Manuel Jesús Castro Díaz,et al.  Well-Balanced High Order Extensions of Godunov's Method for Semilinear Balance Laws , 2008, SIAM J. Numer. Anal..

[73]  T. Morales de Luna,et al.  On a shallow water model for the simulation of turbidity currents , 2009 .

[74]  Philippe G. LeFloch,et al.  Numerical methods with controlled dissipation for small-scale dependent shocks* , 2013, Acta Numerica.

[75]  Pierre Degond,et al.  Polynomial upwind schemes for hyperbolic systems , 1999 .

[76]  N. Chalmers,et al.  On the numerical approximation of one-dimensional nonconservative hyperbolic systems , 2013, J. Comput. Sci..

[77]  Rémi Abgrall,et al.  Numerical Approximation of a Compressible Multiphase System , 2014 .

[78]  Marica Pelanti,et al.  A Roe-type scheme for two-phase shallow granular flows over variable topography , 2008 .

[79]  Rémi Abgrall,et al.  High-Order Preserving Residual Distribution Schemes for Advection-Diffusion Scalar Problems on Arbitrary Grids , 2014, SIAM J. Sci. Comput..

[80]  Carlos Parés,et al.  Godunov method for nonconservative hyperbolic systems , 2007 .

[81]  Manuel Jesús Castro Díaz,et al.  High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems , 2009, J. Sci. Comput..

[82]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[83]  P. Goatin,et al.  The Riemann problem for a class of resonant hyperbolic systems of balance laws , 2004 .

[84]  Mario Ricchiuto,et al.  An explicit residual based approach for shallow water flows , 2015, J. Comput. Phys..

[85]  J. Colombeau,et al.  Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations , 1989 .

[86]  Manuel Jesús Castro Díaz,et al.  A Class of Computationally Fast First Order Finite Volume Solvers: PVM Methods , 2012, SIAM J. Sci. Comput..

[87]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[88]  Manuel Jesús Castro Díaz,et al.  On Well-Balanced Finite Volume Methods for Nonconservative Nonhomogeneous Hyperbolic Systems , 2007, SIAM J. Sci. Comput..

[89]  Eleuterio F. Toro,et al.  A weighted average flux method for hyperbolic conservation laws , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[90]  Smadar Karni,et al.  Viscous shock profiles and primitive formulations , 1992 .

[91]  Antonio Marquina,et al.  Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..

[92]  Enrique D. Fernández-Nieto,et al.  Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods , 2008 .

[93]  Chiara Simeoni,et al.  Convergence of the Upwind Interface Source Method for Hyperbolic Conservation Laws , 2003 .

[94]  Steinar Evje,et al.  A MUSTA Scheme for a Nonconservative Two-Fluid Model , 2009, SIAM J. Sci. Comput..

[95]  Manuel Jesús Castro Díaz,et al.  On an Intermediate Field Capturing Riemann Solver Based on a Parabolic Viscosity Matrix for the Two-Layer Shallow Water System , 2011, J. Sci. Comput..

[96]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[97]  R. Abgrall,et al.  Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations , 2015, J. Comput. Phys..

[98]  Rémi Abgrall,et al.  A comment on the computation of non-conservative products , 2010, J. Comput. Phys..

[99]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[100]  Eleuterio F. Toro,et al.  MUSTA fluxes for systems of conservation laws , 2006, J. Comput. Phys..

[101]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..