A single-atom electron spin qubit in silicon

A single atom is the prototypical quantum system, and a natural candidate for a quantum bit, or qubit—the elementary unit of a quantum computer. Atoms have been successfully used to store and process quantum information in electromagnetic traps, as well as in diamond through the use of the nitrogen–vacancy-centre point defect. Solid-state electrical devices possess great potential to scale up such demonstrations from few-qubit control to larger-scale quantum processors. Coherent control of spin qubits has been achieved in lithographically defined double quantum dots in both GaAs (refs 3–5) and Si (ref. 6). However, it is a formidable challenge to combine the electrical measurement capabilities of engineered nanostructures with the benefits inherent in atomic spin qubits. Here we demonstrate the coherent manipulation of an individual electron spin qubit bound to a phosphorus donor atom in natural silicon, measured electrically via single-shot read-out. We use electron spin resonance to drive Rabi oscillations, and a Hahn echo pulse sequence reveals a spin coherence time exceeding 200 µs. This time should be even longer in isotopically enriched 28Si samples. Combined with a device architecture that is compatible with modern integrated circuit technology, the electron spin of a single phosphorus atom in silicon should be an excellent platform on which to build a scalable quantum computer.

[1]  S. Sarma,et al.  Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment , 2005, cond-mat/0512323.

[2]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[3]  Andrea Morello,et al.  Electron spin decoherence in isotope-enriched silicon. , 2010, Physical review letters.

[4]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[5]  E. A. Gere,et al.  Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects , 1959 .

[6]  Akira Hirai,et al.  Electron Spin Echo Decay Behaviours of Phosphorus Doped Silicon , 1972 .

[7]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[9]  E. Yablonovitch,et al.  Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor , 2004, Nature.

[10]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[11]  S. C. Benjamin,et al.  Coherence of spin qubits in silicon , 2005 .

[12]  Pairwise decoherence in coupled spin qubit networks. , 2006, Physical review letters.

[13]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[14]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[15]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[16]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[17]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[18]  J. Bokor,et al.  Stark tuning of donor electron spins in silicon. , 2007, Physical review letters.

[19]  M. Lagally,et al.  Tunable spin loading and T1 of a silicon spin qubit measured by single-shot readout. , 2010, Physical review letters.

[20]  L. Hollenberg,et al.  Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon , 2009, 0904.1271.

[21]  J. P. Dehollain,et al.  Nanoscale broadband transmission lines for spin qubit control , 2012, Nanotechnology.

[22]  Søren Andresen,et al.  Controlled shallow single ion implantation in silicon using an active substrate for sub-20 keV ions , 2005 .

[23]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[24]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[25]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[26]  Eugene E. Haller,et al.  Solid-state quantum memory using the 31P nuclear spin , 2008, Nature.

[27]  Dynamical Decoupling in the Presence of Realistic Pulse Errors , 2010, 1011.1903.

[28]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[29]  K. B. Whaley,et al.  Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon , 2005, cond-mat/0507318.

[30]  J. Beeman,et al.  High-Purity, Isotopically Enriched Bulk Silicon , 2005 .