The corona and companion of CoRoT-2a. Insights from X-rays and optical spectroscopy

CoRoT-2 is one of the most unusual planetary systems known to date. Its host star is exceptionally active, showing a pronounced, regular pattern of optical variability caused by magnetic activity. The transiting hot Jupiter, CoRoT-2b, shows one of the largest known radius anomalies. We analyze the properties and activity of CoRoT-2a in the optical and X-ray regime by means of a highquality UVES spectrum and a 15 ks Chandra exposure both obtained during planetary transits. The UVES data are analyzed using various complementary methods of high-resolution stellar spectroscopy. We characterize the photosphere of the host star by deriving accurate stellar parameters such as effective temperature, surface gravity, and abundances. Signatures of stellar activity, Li abundance, and interstellar absorption are investigated to provide constraints on the age and distance of CoRoT-2. Furthermore, our UVES data confirm the presence of a late-type stellar companion to CoRoT-2a that is gravitationally bound to the system. The Chandra data provide a clear detection of coronal X-ray emission from CoRoT-2a, for which we obtain an X-ray luminosity of 1.9 × 10 29 erg s −1 . The potential stellar companion remains undetected in X-rays. Our results indicate that the distance to the CoRoT-2 system is ≈270 pc, and the most likely age lies between 100 and 300 Ma. Our X-ray observations show that the planet is immersed in an intense field of high-energy radiation. Surprisingly, CoRoT-2a’s likely coeval stellar companion, which we find to be of late-K spectral type, remains X-ray dark. Yet, as a potential third body in the system, the companion could account for CoRoT-2b’s slightly eccentric orbit.

[1]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[2]  I. Busá,et al.  The Ca II Infrared Triplet as a stellar activity diagnostic I. Non-LTE photospheric profiles and definition of the RIRT indicator , 2005 .

[3]  The young active binary star EK Draconis , 2005, astro-ph/0501608.

[4]  Christopher J. Corbally,et al.  The calibration of MK spectral classes using spectral synthesis. 1: The effective temperature calibration of dwarf stars , 1994 .

[5]  John R. Stauffer,et al.  The evolution of the lithium abundances of solar-type stars. III - The Pleiades , 1993 .

[6]  J. Valenti,et al.  New algorithms for reducing cross-dispersed echelle spectra , 2002 .

[7]  K. F. Huber,et al.  How stellar activity affects the size estimates of extrasolar planets , 2009, 0906.3604.

[8]  Antonino Francesco Lanza,et al.  Magnetic activity in the photosphere of CoRoT-Exo-2a. Active longitudes and short-term spot cycle in , 2008, 0811.0461.

[9]  A. Collier Cameron,et al.  The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm , 2009, 0911.5087.

[10]  Robert L. Kurucz,et al.  SYNTHE Spectrum Synthesis Programs and Line Data. , 1993 .

[11]  B. Strömgren On the Density Distribution and Chemical Composition of the Interstellar Gas. , 1948 .

[12]  John R. Stauffer,et al.  The Evolution of the Lithium Abundances of Solar-Type Stars. IV. Praesepe , 1993 .

[13]  O. C. Wilson,et al.  H and K Emission in Late-Type Stars: Dependence of Line Width on Luminosity and Related Topics. , 1957 .

[14]  David R. Soderblom,et al.  The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group , 1993 .

[15]  Sofia Randich,et al.  Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .

[16]  P. Kabath,et al.  GROUND-BASED NEAR-INFRARED OBSERVATIONS OF THE SECONDARY ECLIPSE OF CoRoT-2b , 2010, 1001.3060.

[17]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[18]  K. Huber,et al.  A planetary eclipse map of CoRoT-2a - Comprehensive lightcurve modeling combining rotational-modulation and transits , 2009, 0909.3256.

[19]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[20]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[21]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[22]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[23]  C. Moutou,et al.  Transiting exoplanets from the CoRoT space mission - II. CoRoT-Exo-2b: a transiting planet around an active G star , 2008, 0803.3207.

[24]  M. Giampapa,et al.  The X-Ray View of the Low-Mass Stars in the Solar Neighborhood , 1995 .

[25]  A. F. Lanza,et al.  Hot Jupiters and the evolution of stellar angular momentum , 2009, Proceedings of the International Astronomical Union.

[26]  A. P. Hatzes,et al.  Transit mapping of a starspot on CoRoT-2. Probing a stellar surface with planetary transits , 2009, 0906.4140.

[27]  I. Busá,et al.  The CaII infrared triplet as a stellar activity diagnostic - II. Test and calibration with high resolution observations , 2007 .

[28]  A. Alapini,et al.  An effective temperature calibration for solar type stars using equivalent width ratios - A fast and easy spectroscopic temperature estimation , 2009, 0912.2651.

[29]  F. R. Harnden,et al.  ROSAT Observations of the Pleiades. I. X-Ray Characteristics of a Coeval Stellar Population , 1996 .

[30]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[31]  I. Ribas,et al.  Estimation of the XUV radiation onto close planets and their evaporation , 2011, 1105.0550.

[32]  A. Burrows,et al.  Bright optical day-side emission from extrasolar planet CoRoT-2b , 2009, 0909.4080.

[33]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[34]  A. Vidal-Madjar,et al.  NA I as a tracer of H I in the diffuse interstellar medium. , 1985 .

[35]  T. Guillot,et al.  A homogeneous spectroscopic analysis of host stars of transiting planets , 2009, 0909.0285.

[36]  K. Huber,et al.  Planetary eclipse mapping of CoRoT-2a - Evolution, differential rotation, and spot migration , 2010, 1002.4113.

[37]  L. Pasquini,et al.  The Wilson-Bappu Effect: a tool to determine stellar distances. , 2003, astro-ph/0301637.

[38]  R. Neuhaeuser,et al.  The multiplicity of exoplanet host stars - New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301 , 2008, 0812.2561.

[39]  Kevin France,et al.  OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b , 2010, 1005.1633.

[40]  C. Moutou,et al.  Improved stellar parameters of CoRoT-7 A star hosting two super Earths , 2010, 1005.3208.

[41]  I. Han,et al.  Interstellar Ca II Line Intensities and the Distances of the OB stars , 2005 .

[42]  R. Lallement,et al.  New 3D gas density maps of NaI and CaII interstellar absorption within 300 pc , 2009, 0912.3040.

[43]  T. Ayres Chromospheric scaling laws, width-luminosity correlations, and the Wilson-Bappu effect. [correlation between stellar magnitude and emission line width] , 1979 .

[44]  D. Soderblom,et al.  The evolution of the lithium abundances of solar-type stars. I. The Hyades and Coma Berenices clusters , 1990 .

[45]  Donald P. Cox,et al.  The local interstellar medium , 1987 .

[46]  Sallie L. Baliunas,et al.  Cool stars, stellar systems and the Sun , 1984 .

[47]  Porto,et al.  A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES) , 2007, astro-ph/0703696.

[48]  Arthur H. Vaughan,et al.  FLUX MEASUREMENTS OF CA II AND K EMISSION. , 1978 .

[49]  Tristan Guillot,et al.  An analysis of the CoRoT-2 system: A young spotted star and its inflated giant planet , 2010, 1010.1078.

[50]  D. Soderblom,et al.  Evolution Of The Lithium Abundances Of Solar-Type Stars. IX. High-Resolution Spectroscopy of Low-Mass Stars in NGC 2264 , 1999 .

[51]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[52]  K. Fuhrmann Nearby stars of the Galactic disk and halo. III. , 1998 .

[53]  A. Pollock,et al.  A scenario of planet erosion by coronal radiation (Corrigendum) , 2010, 1002.1875.

[54]  C. Moutou,et al.  Transiting exoplanets from the CoRoT space mission: III. The spectroscopic transit of CoRoT-Exo-2b with SOPHIE and HARPS , 2008, 0803.3209.

[55]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[56]  J. King Lithium abundances of intermediate-mass, pre-main-sequence stars in Orion IC , 1993 .

[57]  E. Bubar,et al.  SPECTROSCOPIC ABUNDANCES AND MEMBERSHIP IN THE WOLF 630 MOVING GROUP , 2010, 1005.1205.

[58]  G. Galazutdinov,et al.  The interstellar Ca II distance scale , 2009 .

[59]  Nikole K. Lewis,et al.  WARM SPITZER PHOTOMETRY OF THE TRANSITING EXOPLANETS CoRoT-1 AND CoRoT-2 AT SECONDARY ECLIPSE , 2010, 1011.1019.

[60]  Antonino Francesco Lanza,et al.  Properties of starspots on CoRoT-2 , 2009, 0909.4055.

[61]  N. O. Weiss,et al.  The relation between stellar rotation rate and activity cycle periods , 1984 .