Overview of Numerical Methods in Palaeolimnology

This chapter presents a general introduction and overview of the and statistical techniques that are most commonly used in quantitative palaeolimnology. After discussing the different types of palaeolimnological data (modern surface-samples and stratigraphical data) and the role of quantification in palaeolimnology, it presents a brief overview of the numerical techniques used in data collection, data assessment, data summarisation, data analysis, and data interpretation. In addition, the chapter describes important numerical and statistical procedures that are not covered elsewhere in the book such as numerical tools in identification, classification, and assignment, and statistical techniques of regression analysis and statistical modelling.

[1]  R. Warwick,et al.  Similarity-based testing for community pattern: the two-way layout with no replication , 1994 .

[2]  C.J.F. ter Braak,et al.  Diatoms and pH Reconstruction , 1990 .

[3]  William D. Berry,et al.  Multiple regression in practice , 1985 .

[4]  C. Braak,et al.  Interpreting canonical correlation analysis through biplots of structure correlations and weights , 1990 .

[5]  Scott R. Eliason Maximum likelihood estimation: Logic and practice. , 1994 .

[6]  H. John B. Birks,et al.  Conclusions and Future Challenges , 2012 .

[7]  Anson W. Mackay,et al.  Diatom sensitivity to hydrological and nutrient variability in a subtropical, flood‐pulse wetland , 2012 .

[8]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[9]  Lester L. Yuan Assigning macroinvertebrate tolerance classifications using generalised additive models , 2004 .

[10]  M. Uschold,et al.  Methods and applications , 1953 .

[11]  I. Jolliffe Principal Component Analysis , 2002 .

[12]  Lasse Holmström,et al.  Making inferences about past environmental change using smoothing in multiple time scales , 2002, Comput. Stat. Data Anal..

[13]  T. Cacoullos,et al.  Discriminant analysis and applications , 1974 .

[14]  Ken Aho,et al.  Identification and siting of native vegetation types on disturbed land: demonstration of statistical methods , 2011 .

[15]  L. Hamilton 217-249 inRegression with Graphics: A Second Course in Applied Statistics , 1991 .

[16]  N. Lam,et al.  Paleovegetational Reconstruction Based on Modern and Fossil Pollen Data: An Application of Discriminant Analysis , 1985 .

[17]  J. Faraway Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models , 2005 .

[18]  N. Anderson,et al.  Deciphering the effect of climate change and separating the influence of confounding factors in sediment core records using additive models , 2009 .

[19]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[20]  P. Fayers,et al.  The Visual Display of Quantitative Information , 1990 .

[21]  E. Deevey Coaxing History to Conduct Experiments , 1969 .

[22]  R. O’Hara,et al.  Do not log‐transform count data , 2010 .

[23]  J. C. Gower,et al.  A Q- technique for the calculation of canonical varlates , 1966 .

[24]  Phillip I. Good,et al.  Resampling Methods: A Practical Guide to Data Analysis , 2005 .

[25]  M. Hardy Regression with dummy variables , 1993 .

[26]  John Bibby,et al.  The Analysis of Contingency Tables , 1978 .

[27]  B. Malmgren,et al.  Application of artificial neural networks to paleoceanographic data , 1997 .

[28]  James S. Clark,et al.  Sediment records of biomass burning and global change , 1997 .

[29]  McCarthyEd,et al.  A Unified Approach , 2005 .

[30]  Bent Vad Odgaard,et al.  Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan‐European lakes , 2009 .

[31]  H. Birks,et al.  Modern Pollen Assemblages and Vegetational History of the Moraines of the Klutlan Glacier and Its Surroundings, Yukon Territory, Canada , 1980, Quaternary Research.

[32]  John W. Tukey,et al.  Data Analysis and Regression: A Second Course in Statistics , 1977 .

[33]  T. Fearn,et al.  Bayes model averaging with selection of regressors , 2002 .

[34]  H. Schielzeth Simple means to improve the interpretability of regression coefficients , 2010 .

[35]  D. Zelený,et al.  Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires , 2007 .

[36]  A. Correa-Metrio,et al.  Pollen distribution along climatic and biogeographic gradients in northern Central America , 2011 .

[37]  Molly Schauffler,et al.  The postglacial history of three Picea species in New England, USA , 2003, Quaternary Research.

[38]  M. Lesperance,et al.  PIECEWISE REGRESSION: A TOOL FOR IDENTIFYING ECOLOGICAL THRESHOLDS , 2003 .

[39]  E. J. Cushing,et al.  Identification of Pine Pollen of Late Quaternary Age from the Chuska Mountains, New Mexico , 1973 .

[40]  John P. Smol,et al.  Tracking environmental change using lake sediments. Volume 2: Physical and geochemical methods. , 2001 .

[41]  Chandler Stolp,et al.  The Visual Display of Quantitative Information , 1983 .

[42]  Geoffrey J. McLachlan,et al.  Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog , 2005 .

[43]  Mike James,et al.  Classification Algorithms , 1986, Encyclopedia of Machine Learning and Data Mining.

[44]  M. Greenacre,et al.  Multiple Correspondence Analysis and Related Methods , 2006 .

[45]  Peter Sprent,et al.  Data Driven Statistical Methods , 1997 .

[46]  Lawrence C. Marsh Spline Regression Models , 2001 .

[47]  Cajo J. F. ter Braak,et al.  Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising , 2006, Comput. Stat. Data Anal..

[48]  Michael Schulz,et al.  Spectrum: spectral analysis of unevenly spaced paleoclimatic time series , 1997 .

[49]  Ter Braak,et al.  Canoco reference manual and CanoDraw for Windows user''s guide: software for canonical community ord , 2002 .

[50]  D. J. Hand,et al.  Recent advances in error rate estimation , 1986, Pattern Recognit. Lett..

[51]  F. Ramsey,et al.  The statistical sleuth : a course in methods of data analysis , 2002 .

[52]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[53]  Elizabeth A. Peck,et al.  Introduction to Linear Regression Analysis , 2001 .

[54]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[55]  John R. Leathwick,et al.  Climatic relationships of some New Zealand forest tree species , 1995 .

[56]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[57]  B. Reineking,et al.  Constrain to perform: Regularization of habitat models , 2006 .

[58]  Milan Chytrý,et al.  The relationships of modern pollen spectra to vegetation and climate along a steppe–forest–tundra transition in southern Siberia, explored by decision trees , 2008 .

[59]  Annette Witt,et al.  Holocene climate variability on millennial scales recorded in Greenland ice cores , 2005 .

[60]  C. Curtis,et al.  Regional influence of acid deposition and climate change in European mountain lakes assessed using diatom transfer functions , 2009 .

[61]  J. Elith,et al.  Species Distribution Models: Ecological Explanation and Prediction Across Space and Time , 2009 .

[62]  H. John B. Birks,et al.  Analysis of Stratigraphical Data , 2012 .

[63]  Brent B. Wolfe,et al.  Epiphytic diatoms as flood indicators , 2010 .

[64]  Lasse Holmström,et al.  A Quantitative Holocene Climatic Record from Diatoms in Northern Fennoscandia , 2000, Quaternary Research.

[65]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[66]  Stefan Engels,et al.  Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes , 2011, Hydrobiologia.

[67]  G. De’ath,et al.  CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS , 2000 .

[68]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[69]  P. T. Davies,et al.  Procedures for Reduced‐Rank Regression , 1982 .

[70]  Brian H. McArdle,et al.  FITTING MULTIVARIATE MODELS TO COMMUNITY DATA: A COMMENT ON DISTANCE‐BASED REDUNDANCY ANALYSIS , 2001 .

[71]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[72]  C. Braak,et al.  Unimodal models to relate species to environment , 1988 .

[73]  E. Heegaard Ecology of Andreaea in western Norway , 1997 .

[74]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[75]  John P. Smol,et al.  Pollution of Lakes and Rivers: A Paleoenvironmental Perspective , 2002 .

[76]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[77]  B. Everitt An R and S-Plus® Companion to Multivariate Analysis , 2007 .

[78]  H. Birks,et al.  Identification of Picea pollen of Late Quaternary age in eastern North America: a numerical approach , 1980 .

[79]  Christopher H. Achen Interpreting and Using Regression , 1982 .

[80]  H. J. B. Birks,et al.  Numerical Methods in Quaternary Pollen Analysis. , 1989 .

[81]  Brian Everitt,et al.  Cluster analysis , 1974 .

[82]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[83]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[84]  Frederic Bartumeus,et al.  Ecological thresholds in European alpine lakes , 2009 .

[85]  John P. Smol,et al.  Tracking environmental change using lake sediments. Volume 4: Zoological indicators. , 2001 .

[86]  H. Birks The Diatoms: Numerical methods for the analysis of diatom assemblage data , 2010 .

[87]  G. Belle Statistical rules of thumb , 2002 .

[88]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[89]  Mike Baxter,et al.  Multivariate-Analysis of Data on Glass Compositions - A Methodological Note , 1989 .

[90]  F. Hartwig,et al.  Exploratory Data Analysis , 2008, Using Science in Cybersecurity.

[91]  A. Dobson An introduction to generalized linear models , 1990 .

[92]  Tomás Aluja,et al.  Book review: Multiple correspondence analysis and related methods. Greenacre, M. and Blasius, J. Chapman & Hall/CRC, 2006. , 2006 .

[93]  A. D. Gordon,et al.  Numerical methods in Quaternary palaeoecology. IV. Separating mixtures of morphologically similar pollen taxa , 1977 .

[94]  William D. Berry Understanding regression assumptions , 1993 .

[95]  C.J.F. ter Braak,et al.  The analysis of vegetation-environment relationships by canonical correspondence analysis , 1987 .

[96]  Julian D. Olden,et al.  A comparison of statistical approaches for modelling fish species distributions , 2002 .

[97]  M. Meadows,et al.  The application of multiple discriminant analysis to the reconstruction of the vegetation history of Fynbos, southern Africa , 1991 .

[98]  Sarah W. Hardy,et al.  Use of CART analysis to differentiate pollen of red pine (Pinus resinosa) and jack pine (P. banksiana) in New England , 2011, Quaternary Research.

[99]  Marti J. Anderson,et al.  REEF-ASSOCIATED PREDATORS INFLUENCE ADJACENT SOFT-SEDIMENT COMMUNITIES , 2005 .

[100]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[101]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[102]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[103]  J. Smol,et al.  Terrestrial, algal, and siliceous indicators , 2001 .

[104]  J. Russell,et al.  Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera) , 2010 .

[105]  C.J.F. ter Braak,et al.  Biplots in Reduced-Rank Regression , 1994 .

[106]  Multivariate statistical analysis of geochemical data examplified by Proterozoic dyke swarms in Sweden , 1999 .

[107]  Gavin Simpson,et al.  Human Impacts: Applications of Numerical Methods to Evaluate Surface-Water Acidification and Eutrophication , 2012 .

[108]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[109]  Donald A. Jackson COMPOSITIONAL DATA IN COMMUNITY ECOLOGY: THE PARADIGM OR PERIL OF PROPORTIONS? , 1997 .

[110]  Brad Warner,et al.  Understanding Neural Networks as Statistical Tools , 1996 .

[111]  R. Pienitz,et al.  Editorial: Advances in Paleolimnology , 2009 .

[112]  David C. Hoaglin,et al.  Applications, basics, and computing of exploratory data analysis , 1983 .

[113]  Lori B. Pfahler Statistical Graphics for Visualizing Multivariate Data , 1998, Technometrics.

[114]  J. Michaelsen,et al.  Regression Tree Analysis of satellite and terrain data to guide vegetation sampling and surveys , 1994 .

[115]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[116]  B. Thompson Canonical Correlation Analysis , 1984 .

[117]  M. Hill,et al.  Detrended correspondence analysis: an improved ordination technique , 1980 .

[118]  N. Anderson,et al.  A comparison of relative abundance versus class data in diatom-based quantitative reconstructions. , 2010, Journal of environmental management.

[119]  Pierre Dutilleul,et al.  Autocorrelogram and Periodogram Analyses of Palaeolimnological Temporal-Series from Lakes in Central and Western North America to Assess Shifts in Drought Conditions , 2012 .

[120]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[121]  Louis J. Maher,et al.  Nomograms for computing 0.95 confidence limits of pollen data , 1972 .

[122]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[123]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[124]  Ulrike Herzschuh,et al.  Evaluating the indicator value of Tibetan pollen taxa for modern vegetation and climate , 2010 .

[125]  D. Warton Raw data graphing: an informative but under‐utilized tool for the analysis of multivariate abundances , 2008 .

[126]  G. Simpson Analogue Methods in Palaeolimnology , 2012 .

[127]  Carin Andersson,et al.  Biases in the estimation of transfer function prediction errors , 2004 .

[128]  S. Weiss,et al.  GLM versus CCA spatial modeling of plant species distribution , 1999, Plant Ecology.

[129]  D. Foster,et al.  A late-glacial transition from Picea glauca to Picea mariana in southern New England , 2007, Quaternary Research.

[130]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[131]  H. J. B. Birks,et al.  Separating wheat from chaff: Diatom taxon selection usingan artificial neural network pruning algorithm , 2003 .

[132]  H. John B. Birks,et al.  Statistical Learning in Palaeolimnology , 2012 .

[133]  J. Copas Regression, Prediction and Shrinkage , 1983 .

[134]  L. Maher Statistics for microfossil concentration measurements employing samples spiked with marker grains , 1981 .

[135]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[136]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[137]  H. Birks,et al.  Holocene land-cover changes on the Tibetan Plateau , 2010 .

[138]  J. Friedman,et al.  Predicting Multivariate Responses in Multiple Linear Regression , 1997 .

[139]  J. R. Flenley,et al.  Towards automation of palynology 3: pollen pattern recognition using Gabor transforms and digital moments , 2004 .

[140]  Marti J. Anderson,et al.  Consistency and variation in kelp holdfast assemblages: Spatial patterns of biodiversity for the major phyla at different taxonomic resolutions , 2005 .

[141]  John P. Smol,et al.  Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques , 2001 .

[142]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[143]  J. Fox Nonparametric Regression Appendix to An R and S-PLUS Companion to Applied Regression , 2002 .

[144]  D. Kleinbaum,et al.  Applied Regression Analysis and Other Multivariate Methods , 1978 .

[145]  J. R. Flenley,et al.  Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images , 2004 .

[146]  A. D. Gordon Some observations on methods of estimating the proportions of morphologically similar pollen types in fossil samples , 1982 .

[147]  K. Bennett,et al.  Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences , 1994 .

[148]  Kung-Sik Chan,et al.  Time Series Analysis: With Applications in R , 2010 .

[149]  Jennifer A. Miller,et al.  Mapping Species Distributions: Spatial Inference and Prediction , 2010 .

[150]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[151]  C.J.F. ter Braak,et al.  Partial canonical correspondence analysis , 1988 .

[152]  Paul A Murtaugh,et al.  Performance of several variable-selection methods applied to real ecological data. , 2009, Ecology letters.

[153]  H. Birks,et al.  Present-day temperatures in northern Scandinavia during the last glaciation , 2007 .

[154]  C. Braak,et al.  Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches , 1995 .

[155]  S. Lavorel,et al.  Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales , 2003 .

[156]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[157]  Thomas A. Davidson,et al.  The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach , 2010 .

[158]  Andrew Gelman,et al.  Let's Practice What We Preach , 2002 .

[159]  Peter Dalgaard,et al.  Introductory statistics with R , 2002, Statistics and computing.

[160]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[161]  Hongyan Liu,et al.  Detecting Holocene movements of the woodland–steppe ecotone in northern China using discriminant analysis , 2001 .

[162]  William S. Cleveland The elements of graphing data , 1980 .

[163]  S. Ian Robertson,et al.  Problem-solving , 2001, Human Thinking.

[164]  T. Yee,et al.  Generalized additive models in plant ecology , 1991 .

[165]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[166]  H. John B. Birks,et al.  From Classical to Canonical Ordination , 2012 .

[167]  Julian J. Faraway,et al.  Extending the Linear Model with R , 2004 .

[168]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[169]  A. Izenman Reduced-rank regression for the multivariate linear model , 1975 .

[170]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[171]  J. Gill,et al.  Generalized Linear Models: A Unified Approach , 2000 .

[172]  Roger Mundry,et al.  Stepwise Model Fitting and Statistical Inference: Turning Noise into Signal Pollution , 2008, The American Naturalist.

[173]  R. R. Hocking,et al.  The regression dilemma , 1983 .

[174]  Todd J. Landers,et al.  Relationships between taxonomic resolution and spatial scales of multivariate variation , 2005 .

[175]  G. De’ath MULTIVARIATE REGRESSION TREES: A NEW TECHNIQUE FOR MODELING SPECIES–ENVIRONMENT RELATIONSHIPS , 2002 .

[176]  P. Wood,et al.  The use of caddisfly fauna (Insecta: Trichoptera) to characterise the Late‐glacial River Trent, England , 2003 .

[177]  H. Birks,et al.  Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden , 2002 .

[178]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[179]  B. Everitt,et al.  Cluster Analysis: Everitt/Cluster Analysis , 2011 .

[180]  Stephen E. Fienberg,et al.  The analysis of cross-classified categorical data , 1980 .

[181]  R. Wehrens Chemometrics with R , 2020, Use R!.

[182]  Thomas A. Davidson,et al.  Inferring past zooplanktivorous fish and macrophyte density in a shallow lake: application of a new regression tree model , 2010 .

[183]  B. Cumming,et al.  Tracking Holocene Climatic Change with Aquatic Biota from Lake Sediments: Case Studies of Commonly used Numerical Techniques , 2012 .

[184]  M. Tso Reduced‐Rank Regression and Canonical Analysis , 1981 .

[185]  Kamala London,et al.  Modern Regression Techniques Using R: A Practical Guide for Students and Researchers , 2009 .

[186]  H. Olff,et al.  A hierarchical set of models for species response analysis , 1993 .

[187]  F. Hu,et al.  How well do sediment indicators record past climate? An evaluation using annually laminated sediments , 2011 .

[188]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[189]  H. Birks,et al.  Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients , 1998 .

[190]  J. O. Rawlings,et al.  Applied Regression Analysis: A Research Tool , 1988 .

[191]  Matthew A. Zapala,et al.  Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables , 2006, Proceedings of the National Academy of Sciences.

[192]  Maarten Blaauw,et al.  Estimation of Age-Depth Relationships , 2012 .

[193]  Michael J. Crawley,et al.  The R book , 2022 .

[194]  A. Vanderpoorten,et al.  Trophic Response Curves of Aquatic Bryophytes in Lowland Calcareous Streams , 1999 .

[195]  M. Meadows,et al.  The use of multiple discriminant analysis in reconstructing recent vegetation changes on the Nuwelveldverg, South Africa , 1989 .

[196]  J. Overpeck,et al.  Ecotone shift and major droughts during the mid-late Holocene in the central Tibetan Plateau. , 2008, Ecology.

[197]  P. Dutilleul Rhythms and autocorrelation analysis , 1995 .

[198]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[199]  J. Fox,et al.  Applied Regression Analysis and Generalized Linear Models , 2008 .

[200]  H. J. B. Birks,et al.  Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate , 1997 .

[201]  H. Birks,et al.  Quantitative Environmental Reconstructions from Biological Data , 2012 .

[202]  John P. Smol,et al.  Tracking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators. , 2001 .

[203]  Frank E. Harrell,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2001 .

[204]  D. Pont,et al.  A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment , 2001 .

[205]  Richard J. Telford,et al.  A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages , 2011 .

[206]  David A. Elston,et al.  ASSESSMENT OF PREFERENCE AMONG A RANGE OF OPTIONS USING LOG RATIO ANALYSIS , 1996 .

[207]  F. Pampel Logistic Regression: A Primer , 2000 .

[208]  Mike Baxter,et al.  STATISTICAL ANALYSIS OF CHEMICAL COMPOSITIONAL DATA AND THE COMPARISON OF ANALYSES , 1992 .

[209]  John P. Smol,et al.  The March Towards the Quantitative Analysis of Palaeolimnological Data , 2012 .

[210]  C. Williams Applied Multivariate Data Analysis (2nd Edition) , 2002 .

[211]  A. Z. Israels,et al.  Redundancy analysis for qualitative variables , 1984 .

[212]  J. Gégout,et al.  The derivation of species response curves with Gaussian logistic regression is sensitive to sampling intensity and curve characteristics , 2006 .

[213]  A. Lotter,et al.  Assessment of Uncertainties Associated with Palaeolimnological Laboratory Methods and Microfossil Analysis , 2012 .

[214]  John M. Chambers,et al.  Graphical Methods for Data Analysis , 1983 .

[215]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[216]  P. Good Resampling Methods , 1999, Birkhäuser Boston.

[217]  Thomas W. Yee,et al.  A NEW TECHNIQUE FOR MAXIMUM‐LIKELIHOOD CANONICAL GAUSSIAN ORDINATION , 2004 .

[218]  Sovan Lek,et al.  Artificial Neuronal Networks , 2000 .

[219]  C. Diebel,et al.  Nonlinear multivariate models of successional change in community structure using the von Bertalanffy curve , 2005, Oecologia.

[220]  George Dunteman,et al.  An Introduction to Generalized Linear Models , 2005 .

[221]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[222]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[223]  John Flenley,et al.  Some prospects for lake sediment analysis in the 21st century , 2003 .

[224]  C.J.F. ter Braak,et al.  Weighted averaging of species indicator values: Its efficiency in environmental calibration , 1986 .

[225]  Edmond Chow,et al.  A cross-validatory method for dependent data , 1994 .

[226]  H. Birks Late-Wisconsinan Vegetational History at Wolf Creek, Central Minnesota , 1976 .

[227]  K. R. Clarke,et al.  Change in marine communities : an approach to statistical analysis and interpretation , 2001 .

[228]  Richard J. Telford,et al.  The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance , 2005 .

[229]  Cajo J. F. ter Braak,et al.  Testing the significance of canonical axes in redundancy analysis , 2011 .

[230]  Julian D Olden,et al.  Machine Learning Methods Without Tears: A Primer for Ecologists , 2008, The Quarterly Review of Biology.

[231]  Boris Schr,et al.  Constrain to perform: Regularization of habitat models , 2006 .

[232]  P. Herman,et al.  Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression , 2002 .

[233]  Joel C. Trexler,et al.  Nontraditional Regression Analyses , 1993 .

[234]  Hans-Hermann Bock,et al.  Classification and Related Methods of Data Analysis , 1988 .

[235]  J. Smol Tracking environmental change using lake sediments. Volume 1: basin analysis, coring, and chronological techniques. , 2001 .

[236]  Larry O'Brien,et al.  Introducing Quantitative Geography: Measurement, Methods and Generalised Linear Models , 1992 .

[237]  Richard J. Telford,et al.  Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression , 2005 .

[238]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[239]  Walter Krämer,et al.  Review of Modern applied statistics with S, 4th ed. by W.N. Venables and B.D. Ripley. Springer-Verlag 2002 , 2003 .

[240]  Irene Gregory-Eaves,et al.  Tailoring palaeolimnological diatom-based transfer functions , 2004 .

[241]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[242]  H. Birks,et al.  D.G. Frey and E.S. Deevey Review 1: Numerical tools in palaeolimnology – Progress, potentialities, and problems , 1998 .

[243]  Björn A. Malmgren,et al.  Logratio transformation of compositional data: a resolution of the constant sum constraint , 1998 .

[244]  Pragya Agarwal,et al.  Self-Organising Maps , 2008 .

[245]  J. Aitchison,et al.  Biplots of Compositional Data , 2002 .

[246]  Tormod Næs,et al.  A user-friendly guide to multivariate calibration and classification , 2002 .

[247]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[248]  Alan H. Fielding,et al.  Cluster and Classification Techniques for the Biosciences , 2006 .

[249]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[250]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[251]  Richard J. Telford,et al.  Evaluation of transfer functions in spatially structured environments , 2009 .

[252]  Pierre Legendre,et al.  Numerical Ecology with R , 2011 .

[253]  Marti J. Anderson,et al.  ASSESSING AND MONITORING ECOLOGICAL COMMUNITY HEALTH IN MARINE SYSTEMS , 2005 .

[254]  W. Atchley,et al.  THE GEOMETRY OF CANONICAL VARIATE ANALYSIS , 1981 .

[255]  R. Tibshirani,et al.  Generalized Additive Models: Some Applications , 1987 .

[256]  H. Birks,et al.  Strengths and Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary Biological Proxies , 2011 .

[257]  William G. Jacoby Statistical Graphics for Univariate and Bivariate Data , 1997 .

[258]  Sébastien Lê,et al.  Exploratory Multivariate Analysis by Example Using R , 2010 .

[259]  C. Braak,et al.  Canonical correspondence analysis and related multivariate methods in aquatic ecology , 1995, Aquatic Sciences.

[260]  Sovan Lek,et al.  Artificial Neuronal Networks: Application To Ecology And Evolution , 2012 .

[261]  H. Birks,et al.  Modelling long-term acidification: a comparison with diatom reconstructions and the implications for reversibility , 1990 .

[262]  H. Birks Modern pollen rain and vegetation of the St. Elias Mountains, Yukon Territory , 1977 .

[263]  J. Fox Applied Regression Analysis, Linear Models, and Related Methods , 1997 .

[264]  H. John B. Birks,et al.  Clustering and Partitioning , 2012 .

[265]  J. Finn A General Model for Multivariate Analysis , 1978 .

[266]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[267]  H. Lamb Modern pollen spectra from Labrador and their use in reconstructing Holocene vegetational history , 1984 .

[268]  G. MacDonald,et al.  Postglacial development of the subalpine-boreal transition forest of western Canada , 1987 .

[269]  G. De’ath PRINCIPAL CURVES: A NEW TECHNIQUE FOR INDIRECT AND DIRECT GRADIENT ANALYSIS , 1999 .

[270]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[271]  Marti J. Anderson,et al.  CANONICAL ANALYSIS OF PRINCIPAL COORDINATES: A USEFUL METHOD OF CONSTRAINED ORDINATION FOR ECOLOGY , 2003 .

[272]  C. Braak Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis , 1986 .

[273]  H. J. B. Birks,et al.  Numerical analysis of pollen samples from central Canada: A comparison of methods , 1975 .

[274]  H. Birks,et al.  Developing a modern pollen–climate calibration data set for Norway , 2010 .

[275]  M. Conner,et al.  Methods to quantify variable importance: implications for the analysis of noisy ecological data. , 2009, Ecology.

[276]  Mollie E. Brooks,et al.  Generalized linear mixed models: a practical guide for ecology and evolution. , 2009, Trends in ecology & evolution.

[277]  Michael Schulz,et al.  REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series , 2002 .

[278]  B. Everitt,et al.  Applied Multivariate Data Analysis. , 1993 .

[279]  H. Birks Reconstructing Environmental Impacts of Fire from the Holocene Sedimentary Record , 1997 .

[280]  Bryan F. J. Manly,et al.  The design and analysis of research studies , 1992 .

[281]  E. Ito,et al.  Morphometric techniques allow environmental reconstructions from low-diversity continental ostracode assemblages , 2010 .

[282]  Mike Walker,et al.  Quaternary Dating Methods , 2005 .

[283]  S. Juggins,et al.  Fuel-type characterization of carbonaceous fly-ash particles using EDS-derived surface chemistries and its application to particles extracted from lake sediments , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[284]  J. R. Flenley,et al.  Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains , 2004 .

[285]  Peter Filzmoser,et al.  Introduction to Multivariate Statistical Analysis in Chemometrics , 2009 .

[286]  J. Overpeck,et al.  Numerical Analysis of Modern and Fossil Pollen Data from the Tibetan Plateau , 2008 .

[287]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[288]  R W Doerge,et al.  Naive Application of Permutation Testing Leads to Inflated Type I Error Rates , 2008, Genetics.

[289]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[290]  M. Vilà,et al.  Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates , 2010 .

[291]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .

[292]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[293]  Sidney Marks,et al.  Discriminant Functions When Covariance Matrices are Unequal , 1974 .

[294]  Thomas W. Yee,et al.  Vector generalized additive models in plant ecology , 2002 .

[295]  André F. Lotter,et al.  Limnological Responses to Environmental Changes at Inter-annual to Decadal Time-Scales , 2012 .

[296]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[297]  C.J.F. ter Braak,et al.  Canonical community ordination. Part I: Basic theory and linear methods , 1994 .

[298]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[299]  Ronald Christensen,et al.  Log-Linear Models , 1994 .

[300]  H. Birks,et al.  Aquatic Biota and the Detection of Climate Change: Are there Consistent Aquatic Ecotones? , 2006 .

[301]  C. Weng,et al.  Species differentiation of North American spruce (Picea) based on morphological and anatomical characteristics of needles. , 2000 .

[302]  C.J.F. ter Braak,et al.  A Theory of Gradient Analysis , 2004 .

[303]  Julian D. Olden,et al.  Torturing data for the sake of generality: How valid are our regression models? , 2000 .

[304]  D. W. Goodall Deviant Index : a New Tool for Numerical Taxonomy , 1966, Nature.

[305]  Bryan F. J. Manly,et al.  Statistics for Environmental Science and Management , 2000 .

[306]  L. Maher Absolute Pollen Diagram of Redrock Lake, Boulder County, Colorado , 1972, Quaternary Research.

[307]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[308]  K. R. Clarke,et al.  Non‐parametric multivariate analyses of changes in community structure , 1993 .

[309]  A. John Bailer,et al.  Statistics for Environmental Biology and Toxicology , 2020 .

[310]  Christine Osborne,et al.  Statistical Calibration: A Review , 1991 .

[311]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[312]  P. Sirois,et al.  Historical variability of subfossil chironomids (Diptera: Chironomidae) in three lakes impacted by natural and anthropogenic disturbances , 2010 .

[313]  Phillip I. Good Introduction to Statistics Through Resampling Methods and R , 2005 .

[314]  M. Greenacre Correspondence analysis in practice , 1993 .

[315]  L. Brubaker,et al.  An evaluation of statistical techniques for discriminating Picea glauca from Picea mariana pollen in northern Alaska , 1987 .

[316]  R. M. Hodgson,et al.  Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory , 2011 .

[317]  M. C. Whiteside Danish Chydorid Cladocera: Modern Ecology and Core Studies , 1970, Ecological Monographs.

[318]  Marti J. Anderson,et al.  Animal-sediment relationships re-visited: Characterising species' distributions along an environmental gradient using canonical analysis and quantile regression splines , 2008 .

[319]  J. Scott Long,et al.  Modern Methods of Data Analysis , 1990 .

[320]  J. V. D. Meer,et al.  Exploring macrobenthos-environment relationship by canonical correlation analysis , 1991 .

[321]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[322]  Martin Kernan,et al.  Regionalisation of remote European mountain lake ecosystems according to their biota: environmental versus geographical patterns. , 2009 .

[323]  Russell B. Millar,et al.  FITTING NONLINEAR ENVIRONMENTAL GRADIENTS TO COMMUNITY DATA: A GENERAL DISTANCE-BASED APPROACH , 2005 .

[324]  J. Dahlgren,et al.  Alternative regression methods are not considered in Murtaugh (2009) or by ecologists in general. , 2010, Ecology letters.

[325]  K. Acharya,et al.  Orchid species richness along Himalayan elevational gradients , 2011 .

[326]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[327]  Richard J. Telford,et al.  Exploratory Data Analysis and Data Display , 2012 .

[328]  Petr Šmilauer,et al.  CANOCO 4.5 Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination , 2002 .

[329]  B. Everitt,et al.  Applied Multivariate Data Analysis: Everitt/Applied Multivariate Data Analysis , 2001 .

[330]  John P. Smol,et al.  The diatoms: applications for the environmental and earth sciences , 2012 .

[331]  J. Smol,et al.  Diatom–environmental relationships and nutrient transfer functions from contrasting shallow and deep limestone lakes in Ontario, Canada , 2004, Hydrobiologia.

[332]  E. Heegaard The outer border and central border for species–environmental relationships estimated by non-parametric generalised additive models , 2002 .

[333]  E. S. Gilbert,et al.  The effect of unequal variance-covariance matrices on Fisher's linear discriminant function. , 1969, Biometrics.

[334]  B. Noon,et al.  Using SiZer to detect thresholds in ecological data , 2009 .

[335]  R W Battarbee,et al.  Reconstructing pre-acidification pH for an acidified Scottish loch: a comparison of palaeolimnological and modelling approaches. , 2005, Environmental pollution.

[336]  Shinichi Nakagawa,et al.  Missing inaction: the dangers of ignoring missing data. , 2008, Trends in ecology & evolution.

[337]  J. Faraway Linear Models with R , 2014 .

[338]  Mike Baxter,et al.  PRINCIPAL COMPONENT AND CORRESPONDENCE ANALYSES OF GLASS COMPOSITIONS: AN EMPIRICAL STUDY , 1991 .

[339]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[340]  Kam‐biu Liu Holocene Paleoecology of the Boreal Forest and Great Lakes‐St. Lawrence Forest in Northern Ontario , 1990 .

[341]  H. Birks,et al.  The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern germany , 1993 .

[342]  Michael A. Sokal,et al.  Relationships between hydrological and limnological conditions in lakes of the Slave River Delta (NWT, Canada) and quantification of their roles on sedimentary diatom assemblages , 2008 .

[343]  B. Everitt The Cambridge Dictionary of Statistics , 1998 .

[344]  R. H. Myers Generalized Linear Models: With Applications in Engineering and the Sciences , 2001 .

[345]  Chris Chatfield,et al.  Problem Solving: A Statistician's Guide , 1988 .

[346]  Derek A. Roff,et al.  Introduction to Computer-Intensive Methods of Data Analysis in Biology: Preface , 2006 .

[347]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[348]  Great Britain. Hm Factory Inspectorate An introductory guide , 1987 .

[349]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[350]  J. Ogden,et al.  Modern pollen spectra and vegetation of Mt Hauhungatahi, central North Island, New Zealand , 1994 .

[351]  Vic Barnett,et al.  Environmental Statistics: Methods and Applications , 2004 .

[352]  J. Fleiss Statistical methods for rates and proportions , 1974 .

[353]  Pierre Legendre,et al.  DISTANCE‐BASED REDUNDANCY ANALYSIS: TESTING MULTISPECIES RESPONSES IN MULTIFACTORIAL ECOLOGICAL EXPERIMENTS , 1999 .

[354]  C. Braak,et al.  Weighted averaging, logistic regression and the Gaussian response model , 2004, Vegetatio.

[355]  Julien M. J. Racca,et al.  A comparison between diatom-based pH inference models using Artificial Neural Networks (ANN), Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WA-PLS) regressions , 2001 .

[356]  John Hinde,et al.  Comprar Statistical Modelling in R | Murray Aitkin | 9780199219148 | Oxford University Press , 2009 .

[357]  Iain Colin Prentice,et al.  Multidimensional scaling as a research tool in quaternary palynology: A review of theory and methods , 1980 .

[358]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[359]  Thomas W Yee,et al.  Constrained additive ordination. , 2006, Ecology.

[360]  B. McArdle The structural relationship: regression in biology , 1988 .

[361]  S. Menard Applied Logistic Regression Analysis , 1996 .

[362]  J. Oksanen,et al.  Continuum theory revisited: what shape are species responses along ecological gradients? , 2002 .

[363]  Raymond O'Connor,et al.  Morphometric analysis of pollen grains for paleoecological studies: classification of Picea from eastern North America. , 2002, American journal of botany.

[364]  L. J. Anthony,et al.  The Cambridge Dictionary of Statistics (2nd ed.) , 2003 .

[365]  David R. Anderson,et al.  Model Based Inference in the Life Sciences: A Primer on Evidence , 1998 .

[366]  Jan Lepš,et al.  Multivariate Analysis of Ecological Data using CANOCO , 2003 .

[367]  David L. Sjoquist,et al.  Understanding Regression Analysis , 1986 .

[368]  Robert P Freckleton,et al.  Why do we still use stepwise modelling in ecology and behaviour? , 2006, The Journal of animal ecology.

[369]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[370]  P. Allison Fixed Effects Regression Models , 2009 .

[371]  C. Braak,et al.  Inferring pH from diatoms: a comparison of old and new calibration methods , 1989, Hydrobiologia.