Solution-processed semiconductors for next-generation photodetectors

Efficient light detection is central to modern science and technology. Current photodetectors mainly use photodiodes based on crystalline inorganic elemental semiconductors, such as silicon, or compounds such as III-V semiconductors. Photodetectors made of solution-processed semiconductors-which include organic materials, metal-halide perovskites and quantum dots-have recently emerged as candidates for next-generation light sensing. They combine ease of processing, tailorable optoelectronic properties, facile integration with complementary metal-oxide-semiconductors, compatibility with flexible substrates and good performance. Here, we review the recent advances and the open challenges in the field of solution-processed photodetectors, examining the topic from both the materials and the device perspective and highlighting the potential of the synergistic combination of materials and device engineering. We explore hybrid phototransistors and their potential to overcome trade-offs in noise, gain and speed, as well as the rapid advances in metal-halide perovskite photodiodes and their recent application in narrowband filterless photodetection.

[1]  Huanli Dong,et al.  Recent advances in polymer phototransistors , 2015 .

[2]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[3]  Jinsong Huang,et al.  A Highly Sensitive Narrowband Nanocomposite Photodetector with Gain , 2016, Advanced materials.

[4]  Zhengguo Xiao,et al.  Fullerene Photodetectors with a Linear Dynamic Range of 90 dB Enabled by a Cross‐Linkable Buffer Layer , 2013 .

[5]  F. Giustino,et al.  Steric engineering of metal-halide perovskites with tunable optical band gaps , 2014, Nature Communications.

[6]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[7]  Yi Xie,et al.  High‐Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite , 2014 .

[8]  V. Klimov,et al.  Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots , 2015, Nature Communications.

[9]  Ross D. Jansen-van Vuuren,et al.  Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers (vol 1, pg 3532, 2013) , 2013 .

[10]  P. Meredith,et al.  Electro-Optics of Conventional and Inverted Thick Junction Organic Solar Cells , 2015 .

[11]  Ross D. Jansen-van Vuuren,et al.  Narrow band green organic photodiodes for imaging , 2014 .

[12]  Junbiao Peng,et al.  Highly responsive organic near-infrared photodetectors based on a porphyrin small molecule , 2014 .

[13]  Paul L. Burn,et al.  Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations , 2014 .

[14]  Charles M Lieber,et al.  Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection , 2006, Nature materials.

[15]  Max Shtein,et al.  Organic photodetector with spectral response tunable across the visible spectrum by means of internal optical microcavity , 2009 .

[16]  Edward H. Sargent,et al.  Schottky barriers to colloidal quantum dot films , 2007 .

[17]  H. Karunadasa,et al.  Post-synthetic halide conversion and selective halogen capture in hybrid perovskites , 2015, Chemical science.

[18]  M. Bawendi,et al.  Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence , 2008, 0806.1966.

[19]  Antoni Rogalski,et al.  Infrared Thermal Detectors , 2010 .

[20]  Uli Lemmer,et al.  Near-infrared imaging with quantum-dot-sensitized organic photodiodes , 2009 .

[21]  A. Rogalski Infrared Detectors, Second Edition , 2010 .

[22]  Edward H Sargent,et al.  Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer. , 2015, ACS nano.

[23]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[24]  Qingfeng Dong,et al.  An Ultraviolet‐to‐NIR Broad Spectral Nanocomposite Photodetector with Gain , 2014 .

[25]  Edward H. Sargent,et al.  Planar-integrated single-crystalline perovskite photodetectors , 2015, Nature Communications.

[26]  A. Karim,et al.  Ultrasensitive solution-processed perovskite hybrid photodetectors , 2015 .

[27]  A. Heeger,et al.  Ultrasensitive solution-processed broad-band photodetectors using CH₃NH₃PbI₃ perovskite hybrids and PbS quantum dots as light harvesters. , 2015, Nanoscale.

[28]  Kanai S. Shah,et al.  Lead iodide X-ray detection systems , 1996 .

[29]  Gerasimos Konstantatos,et al.  Photo-FETs: Phototransistors Enabled by 2D and 0D Nanomaterials , 2016 .

[30]  Stephen R. Forrest,et al.  Efficient, high-bandwidth organic multilayer photodetectors , 2000 .

[31]  Barry P Rand,et al.  Interfacial Depletion Regions: Beyond the Space Charge Limit in Thick Bulk Heterojunctions. , 2016, ACS applied materials & interfaces.

[32]  Gerasimos Konstantatos,et al.  Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. , 2015, Nano letters.

[33]  Paras N. Prasad,et al.  Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor , 2008 .

[34]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[35]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[36]  J. Moon,et al.  High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm , 2009, Science.

[37]  Jiang Tang,et al.  Spectra-selective PbS quantum dot infrared photodetectors. , 2016, Nanoscale.

[38]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[39]  Uli Lemmer,et al.  Organic Microcavity Photodiodes , 2003 .

[40]  Jian Wang,et al.  Large-Area, Full-Color Image Sensors Made with Semiconducting Polymers , 1998 .

[41]  Edward H. Sargent,et al.  Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. , 2008, Nano letters.

[42]  M. Kovalenko,et al.  Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. , 2011, Nature nanotechnology.

[43]  Silke L. Diedenhofen,et al.  Integrated colloidal quantum dot photodetectors with color-tunable plasmonic nanofocusing lenses , 2015, Light: Science & Applications.

[44]  Illan J. Kramer,et al.  Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films , 2015, Nature Communications.

[45]  G. Konstantatos,et al.  PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain , 2007 .

[46]  Ji Qi,et al.  Panchromatic small molecules for UV-Vis-NIR photodetectors with high detectivity , 2014 .

[47]  Edward H. Sargent,et al.  Sensitive solution-processed visible-wavelength photodetectors , 2007 .

[48]  Tania Lasanta,et al.  Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics , 2014 .

[49]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[50]  Vladimir Bulovic,et al.  Photodetectors based on treated CdSe quantum-dot films , 2005 .

[51]  P. Guyot-Sionnest,et al.  1/f noise in semiconductor and metal nanocrystal solids , 2014 .

[52]  Min-Sang Lee,et al.  All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. , 2016, Chemical communications.

[53]  Paul Meredith,et al.  Low Noise, IR‐Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging , 2015, Advanced materials.

[54]  G. Konstantatos,et al.  Electrical effects of metal nanoparticles embedded in ultra-thin colloidal quantum dot films , 2012 .

[55]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[56]  Edward H. Sargent,et al.  Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering , 2015 .

[57]  A. Fratalocchi,et al.  Achieving ultrahigh carrier mobility and photo-responsivity in solution-processed perovskite/carbon nanotubes phototransistors , 2015, 1512.03893.

[58]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[59]  Alan J. Heeger,et al.  Semiconducting Polymer Photodetectors with Electron and Hole Blocking Layers: High Detectivity in the Near-Infrared , 2010, Sensors.

[60]  Philippe Guyot-Sionnest,et al.  Colloidal quantum dots intraband photodetectors. , 2014, ACS nano.

[61]  Jong-Hyun Ahn,et al.  High‐Performance Perovskite–Graphene Hybrid Photodetector , 2015, Advanced materials.

[62]  Arif D. Sheikh,et al.  Ambipolar solution-processed hybrid perovskite phototransistors , 2015, Nature Communications.

[63]  Mike Hambsch,et al.  Thick junction broadband organic photodiodes , 2014 .

[64]  Robert E. Jones,et al.  Status and Outlook , 2008 .

[65]  K. Ho,et al.  A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. , 2015, The journal of physical chemistry letters.

[66]  Adrien Pierre,et al.  High Detectivity All‐Printed Organic Photodiodes , 2015, Advanced materials.

[67]  Jinsong Huang,et al.  High‐Gain and Low‐Driving‐Voltage Photodetectors Based on Organolead Triiodide Perovskites , 2015, Advanced materials.

[68]  Paul L. Burn,et al.  Filterless narrowband visible photodetectors , 2015, Nature Photonics.

[69]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[70]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[71]  S. Jenatsch,et al.  Transparent Organic Photodetector using a Near-Infrared Absorbing Cyanine Dye , 2015, Scientific Reports.

[72]  Ching Wan Tang,et al.  Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells , 1975 .

[73]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[74]  Qingfeng Dong,et al.  A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. , 2012, Nature nanotechnology.

[75]  Gae Hwang Lee,et al.  Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors , 2015, Scientific Reports.

[76]  D. Ma,et al.  Multiple exciton generation induced enhancement of the photoresponse of pulsed-laser-ablation synthesized single-wall-carbon-nanotube/PbS-quantum-dots nanohybrids , 2016, Scientific Reports.

[77]  P. Guyot-Sionnest,et al.  Mid-infrared HgTe colloidal quantum dot photodetectors , 2011 .

[78]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[79]  Yong-Young Noh,et al.  Organic Light Detectors: Photodiodes and Phototransistors , 2013, Advanced materials.

[80]  Caiyun Chen,et al.  Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain , 2015 .

[81]  X. Gong,et al.  Solution-processed ultrasensitive polymer photodetectors with high external quantum efficiency and detectivity. , 2012, ACS applied materials & interfaces.

[82]  Frank H. L. Koppens,et al.  Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor , 2016, Nature Communications.

[83]  Tomoyuki Suzuki,et al.  Challenges of image-sensor development , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[84]  De Weiss,et al.  Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole , 1963 .

[85]  Oleksandr Voznyy,et al.  The Silicon:Colloidal Quantum Dot Heterojunction , 2015, Advanced materials.

[86]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[87]  Robert D. Speller,et al.  A polymer/fullerene based photodetector with extremely low dark current for x-ray medical imaging applications , 2008 .

[88]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[89]  Paul Meredith,et al.  Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes , 2015, Nature Communications.

[90]  Noah D Bronstein,et al.  Solution-Processed, High-Speed, and High-Quantum-Efficiency Quantum Dot Infrared Photodetectors , 2016 .

[91]  Aditya D. Mohite,et al.  High‐Sensitivity p–n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots , 2012 .

[92]  Giovanni Luigi Carlo Bongiovanni,et al.  Solution‐Processable Near‐IR Photodetectors Based on Electron Transfer from PbS Nanocrystals to Fullerene Derivatives , 2009 .

[93]  Piotr Martyniuk,et al.  Quantum-dot infrared photodetectors: Status and outlook , 2008 .

[94]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[95]  Christopher B. Murray,et al.  Exploiting the colloidal nanocrystal library to construct electronic devices , 2016, Science.

[96]  Toshihisa Watabe,et al.  A 128×96 Pixel Stack-Type Color Image Sensor: Stack of Individual Blue-, Green-, and Red-Sensitive Organic Photoconductive Films Integrated with a ZnO Thin Film Transistor Readout Circuit , 2011 .

[97]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[98]  M. G. Harrison,et al.  Analysis of the photocurrent action spectra of MEH-PPV polymer photodiodes , 1997 .

[99]  Guglielmo Lanzani,et al.  Organic-based tristimuli colorimeter , 2007 .

[100]  Tania Lasanta,et al.  Interface Engineering in Hybrid Quantum Dot–2D Phototransistors , 2016 .

[101]  Oleksandr Voznyy,et al.  Quantum-dot-in-perovskite solids , 2015, Nature.

[102]  Luping Yu,et al.  Plastic Near‐Infrared Photodetectors Utilizing Low Band Gap Polymer , 2007 .

[103]  Mike Hambsch,et al.  Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways. , 2014, Journal of the American Chemical Society.

[104]  T. Watabe,et al.  Stacked Image Sensor With Green- and Red-Sensitive Organic Photoconductive Films Applying Zinc Oxide Thin-Film Transistors to a Signal Readout Circuit , 2009, IEEE Transactions on Electron Devices.

[105]  J. Kanicki,et al.  Thin-film organic polymer phototransistors , 2004, IEEE Transactions on Electron Devices.

[106]  Jong Won Chung,et al.  Dynamic Characterization of Green-Sensitive Organic Photodetectors Using Nonfullerene Small Molecules: Frequency Response Based on the Molecular Structure , 2014 .

[107]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[108]  Michael B. Johnston,et al.  Colour-selective photodiodes , 2015, Nature Photonics.

[109]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[110]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[111]  Qingfeng Dong,et al.  Solution-Processed Nanoparticle Super-Float-Gated Organic Field-Effect Transistor as Un-cooled Ultraviolet and Infrared Photon Counter , 2013, Scientific Reports.

[112]  E. Sargent,et al.  Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation , 2009, Science.

[113]  Yanjun Fang,et al.  Resolving Weak Light of Sub‐picowatt per Square Centimeter by Hybrid Perovskite Photodetectors Enabled by Noise Reduction , 2015, Advanced materials.

[114]  Guillermo C Bazan,et al.  Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. , 2009, Nature chemistry.

[115]  R. Curry,et al.  Lead sulphide nanocrystal photodetector technologies , 2016, Nature Photonics.

[116]  P. Meredith,et al.  An Hydrophilic Anode Interlayer for Solution Processed Organohalide Perovskite Solar Cells , 2016 .

[117]  Daniel J. Hellebusch,et al.  Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport , 2016, Nature Communications.

[118]  G. Konstantatos,et al.  Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors , 2012 .

[119]  Tianyu Meng,et al.  High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer , 2014 .

[120]  Tailoring the Electronic Properties of Colloidal Quantum Dots in Metal-Semiconductor Nanocomposites for High Performance Photodetectors. , 2015, Small.

[121]  Zhengguo Xiao,et al.  Large Gain, Low Noise Nanocomposite Ultraviolet Photodetectors with a Linear Dynamic Range of 120 dB , 2014 .

[122]  Torahiko Ando,et al.  Field-effect transistor with polythiophene thin film , 1987 .