Fan wake modelling for computational aeroacoustic simulations of turbulence-cascade interaction noise

The present work addresses the numerical modelling of fan wakes using synthetic turbulence and its influence on turbulence-cascade interaction noise predictions. Initial results show that cascade noise only depends on the circumferentially-averaged turbulence spectra that interact with the cascade. Consequently, isotropic turbulence produces noise predictions with approximately the same level of accuracy than fan wakes with cyclostationary variations in both turbulent kinetic energy and integral length scale. The paper also includes a parameter study on the effects of vane count and camber on cascade noise from thick aerofoils. Numerical results show that vane count may have a significant effect on noise predictions at low frequencies, whereas the effects of camber are negligible.

[1]  S. Grace,et al.  Characteristics of Turbulence in a Turbofan Stage , 2013 .

[2]  Soogab Lee,et al.  High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction. , 2006, The Journal of the Acoustical Society of America.

[3]  Ray Hixon,et al.  Toward low‐noise synthetic turbulent inflow conditions for aeroacoustic calculations , 2013 .

[4]  Broadband Noise Analysis of a Rotor-Stator-Cascade Using Wall Modeled LES Simulation , 2012 .

[5]  Milo D. Dahl,et al.  Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems , 2000 .

[6]  M. Nallasamy,et al.  Computation of rotor wake turbulence noise , 2005 .

[7]  J. Gill,et al.  Symmetric airfoil geometry effects on leading edge noise. , 2013, The Journal of the Acoustical Society of America.

[8]  R. Mani,et al.  Investigation of Fan-Wake/Outlet-Guide-Vane Interaction Broadband Noise , 2015 .

[9]  Vincent P. Blandeau,et al.  Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow. , 2011, The Journal of the Acoustical Society of America.

[10]  Chaitanya Paruchuri,et al.  Aerofoil geometry effects on turbulence interaction noise , 2015 .

[11]  Fernando Gea-Aguilera,et al.  Leading edge noise predictions using anisotropic synthetic turbulence , 2016 .

[12]  S. Benhamadouche,et al.  A synthetic-eddy-method for generating inflow conditions for large-eddy simulations , 2006 .

[13]  Fernando Gea-Aguilera,et al.  Synthetic turbulence methods for leading edge noise predictions , 2015 .

[14]  W Ganz Ulrich,et al.  Boeing 18-Inch Fan Rig Broadband Noise Test , 1998 .

[15]  Phillip Joseph,et al.  Investigation of Rotor Wake Turbulence Through Cyclostationary Spectral Analysis , 2009 .

[16]  Nigel Peake,et al.  On sound generation by the interaction between turbulence and a cascade of airfoils with non-uniform mean flow , 2002, Journal of Fluid Mechanics.

[17]  Gwenael Gabard,et al.  Random-Vortex-Particle Methods for Broadband Fan Interaction Noise , 2010 .

[18]  D. Casalino,et al.  Turbofan Broadband Noise Prediction Using the Lattice Boltzmann Method , 2016 .

[19]  Roland Ewert,et al.  Extension of the Random Particle Mesh method to periodic turbulent flows for fan broadband noise prediction , 2015 .

[20]  Gabriel Reboul,et al.  Numerical Predictions of Turbulence/Cascade-Interaction Noise Using Computational Aeroacoustics with a Stochastic Model , 2015 .

[21]  Xin Zhang,et al.  Turbulence-Cascade Interaction Noise Using an Advanced Digital Filter Method , 2016 .

[22]  R. Ewert Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method , 2008 .

[23]  R. Kraichnan Diffusion by a Random Velocity Field , 1970 .