A hybrid approach to machine learning annotation of large galaxy image databases
暂无分享,去创建一个
[1] University of Toronto,et al. A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release , 2003, astro-ph/0301239.
[2] Lior Shamir,et al. UDAT: A multi-purpose data analysis tool , 2017 .
[3] Lior Shamir,et al. Classification of large acoustic datasets using machine learning and crowdsourcing: application to whale calls. , 2014, The Journal of the Acoustical Society of America.
[4] Barry F. Madore,et al. A Catalogue of Southern Peculiar Galaxies and Associations 2 volume set , 1987 .
[5] Wayne B. Hayes,et al. SpArcFiRe: SCALABLE AUTOMATED DETECTION OF SPIRAL GALAXY ARM SEGMENTS , 2014, 1402.1910.
[6] K. Revathy,et al. Galaxy classification using fractal signature , 2003 .
[7] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[8] Lior Shamir,et al. Practices in source code sharing in astrophysics , 2013, Astron. Comput..
[9] C. Lintott,et al. Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies , 2010, 1007.3265.
[10] N. Otsu. A threshold selection method from gray level histograms , 1979 .
[11] Yannick Mellier,et al. Project EFIGI: Automatic Classification of Galaxies , 2005 .
[12] L. Shamir,et al. A COMPUTER-GENERATED VISUAL MORPHOLOGY CATALOG OF ∼3,000,000 SDSS GALAXIES , 2016, 1602.06854.
[13] Lior Shamir,et al. WND-CHARM: Multi-purpose image classifier , 2013 .
[14] S. Okamura,et al. Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks , 2003, astro-ph/0306390.
[15] C. Conselice,et al. Mass assembly and morphological transformations since z ∼ 3 from CANDELS , 2016, 1606.04952.
[16] E. C. Vasconcellos,et al. DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION , 2010, 1011.1951.
[17] C. Lintott,et al. Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.
[18] Lior Shamir,et al. Automatic detection and quantitative assessment of peculiar galaxy pairs in Sloan Digital Sky Survey , 2014, 1407.5000.
[19] Neil Davey,et al. An automatic taxonomy of galaxy morphology using unsupervised machine learning , 2017, 1709.05834.
[20] Yannick Mellier,et al. The EFIGI catalogue of 4458 nearby galaxies with detailed morphology , 2011, 1103.5734.
[21] Lior Shamir,et al. Quantitative analysis of spirality in elliptical galaxies , 2013, 1310.0387.
[22] Lior Shamir,et al. Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis , 2009, IEEE Transactions on Biomedical Engineering.
[23] Lior Shamir,et al. Morphology-based Query for Galaxy Image Databases , 2016, 1611.06464.
[24] C. Lintott,et al. Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.
[25] S. Djorgovski,et al. Sky Surveys , 2012, 1203.5111.
[26] Lior Shamir,et al. WND-CHARM: Multi-purpose image classification using compound image transforms , 2008, Pattern Recognit. Lett..
[27] Lior Shamir,et al. Galaxy morphology - An unsupervised machine learning approach , 2015, Astron. Comput..
[28] Kieran Jay Edwards,et al. Astronomy and Big Data , 2014 .
[29] G. Vaucouleurs,et al. Third Reference Catalogue of Bright Galaxies , 2012 .
[30] Lior Shamir,et al. Automatic morphological classification of galaxy images. , 2009, Monthly notices of the Royal Astronomical Society.
[31] Lior Shamir,et al. GANALYZER: A TOOL FOR AUTOMATIC GALAXY IMAGE ANALYSIS , 2011, 1105.3214.
[32] B. Poggianti,et al. The Padova–Millennium Galaxy and Group Catalogue (PM2GC): the group-finding method and the PM2GC catalogues of group, binary and single field galaxies , 2011, 1105.3683.
[33] Lior Shamir,et al. Practices in Code Discoverability: Astrophysics Source Code Library , 2012 .
[34] L. Shamir,et al. Automatic quantitative morphological analysis of interacting galaxies , 2013, Astron. Comput..
[35] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[36] Lior Shamir,et al. Source Code for Biology and Medicine Open Access Wndchrm – an Open Source Utility for Biological Image Analysis , 2022 .
[37] Casiana Muñoz-Tuñón,et al. AUTOMATIC UNSUPERVISED CLASSIFICATION OF ALL SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 GALAXY SPECTRA , 2010 .
[38] Roberto G. Abraham,et al. A CATALOG OF DETAILED VISUAL MORPHOLOGICAL CLASSIFICATIONS FOR 14,034 GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2010, 1001.2401.
[39] L. Shamir,et al. A Catalog of Automatically Detected Ring Galaxy Candidates in PanSTARSS , 2017, 1706.03873.
[40] Lior Shamir,et al. Combining Human and Machine Learning for Morphological Analysis of Galaxy Images , 2014, ArXiv.
[41] Marc Huertas-Company,et al. Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification , 2010, 1010.3018.
[42] David W. Hogg,et al. Preparing Red‐Green‐Blue Images from CCD Data , 2003, astro-ph/0312483.
[43] Leonidas J. Guibas,et al. The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.
[44] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using Decision Trees , 2006, astro-ph/0606541.
[45] K. Borne. Virtual Observatories, Data Mining, and Astroinformatics , 2013 .
[46] L. Ho,et al. Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.
[47] Lior Shamir,et al. A computer analysis method for correlating knee X-rays with continuous indicators , 2011, International Journal of Computer Assisted Radiology and Surgery.
[48] Lior Shamir,et al. Improving Software Citation and Credit , 2015, ArXiv.