Topological Materials: Weyl Semimetals

Topological insulators and topological semimetals are both new classes of quantum materials, which are characterized by surface states induced by the topology of the bulk band structure. Topological Dirac or Weyl semimetals show linear dispersion around nodes, termed the Dirac or Weyl points, as the three-dimensional analog of graphene. We review the basic concepts and compare these topological states of matter from the materials perspective with a special focus on Weyl semimetals. The TaAs family is the ideal materials class to introduce the signatures of Weyl points in a pedagogical way, from Fermi arcs to the chiral magnetotransport properties, followed by hunting for the type-II Weyl semimetals in WTe2, MoTe2, and related compounds. Many materials are members of big families, and topological properties can be tuned. As one example, we introduce the multifunctional topological materials, Heusler compounds, in which both topological insulators and magnetic Weyl semimetals can be found. Instead of a comp...

[1]  Claudia Felser,et al.  Tunable multifunctional topological insulators in ternary Heusler compounds. , 2010, Nature materials.

[2]  L. Molenkamp,et al.  Quantum Hall effect from the topological surface states of strained bulk HgTe. , 2011, Physical review letters.

[3]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[4]  L. Li,et al.  Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. , 2013, Physical review letters.

[5]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[6]  E. Bauer,et al.  Magnetic torque anomaly in the quantum limit of Weyl semimetals , 2015, Nature Communications.

[7]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[8]  M. Chang,et al.  Chiral magnetic effect in the absence of Weyl node , 2015, 1508.05187.

[9]  T. Oguchi,et al.  Direct observation of nonequivalent Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl semimetal NbP , 2015, 1510.01503.

[10]  Guanghou Wang,et al.  Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride , 2015, Nature Communications.

[11]  Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2 , 2015, Nature.

[12]  Yongbin Lee,et al.  Metallic surface electronic state in half-Heusler compounds RPtBi (R= Lu, Dy, Gd) , 2011, 1101.1261.

[13]  S. Kourtis,et al.  Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals , 2015, 1512.02646.

[14]  E. Bauer,et al.  Magnetotransport of single crystalline NbAs , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Su-Yang Xu,et al.  Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials , 2016, 1603.07318.

[16]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[17]  C. Felser,et al.  Observation of chiral magneto-transport in RPtBi topological Heusler compounds , 2016 .

[18]  S. M. Walker,et al.  Surface states and bulk electronic structure in the candidate type-II Weyl semimetal WTe2 , 2016 .

[19]  L. Taillefer,et al.  Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: A candidate for topological superconductivity , 2013, 1302.1943.

[20]  Wenguang Zhu,et al.  Half-Heusler compounds as a new class of three-dimensional topological insulators. , 2010, Physical review letters.

[21]  C. Felser,et al.  Large linear magnetoresistance and weak anti-localization in Y(Lu)PtBi topological insulators , 2015, 1502.00604.

[22]  Observation of Weyl nodes in TaAs , 2015, 1503.09188.

[23]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[24]  Kai-Yu Yang,et al.  Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates , 2011, 1105.2353.

[25]  Leon Balents,et al.  My title , 2013 .

[26]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[27]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[28]  Desheng Kong,et al.  Opportunities in chemistry and materials science for topological insulators and their nanostructures. , 2011, Nature chemistry.

[29]  Shuang Jia,et al.  Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. , 2010, Nature materials.

[30]  C. Felser,et al.  Linear magnetoresistance caused by mobility fluctuations in n-doped Cd(3)As(2). , 2014, Physical review letters.

[31]  Zhongkai Liu,et al.  Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[32]  Toward Rational Design of Catalysts Supported on a Topological Insulator Substrate , 2015, 1509.02484.

[33]  C. Felser,et al.  Pressure tuning the Fermi surface topology of the Weyl semimetal NbP , 2016, 1604.05502.

[34]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[35]  Karin Schwab,et al.  The Universe In A Helium Droplet , 2016 .

[36]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .

[37]  A. L. Kuzemsky Band Theory and Electronic Properties of Solids , 2017 .

[38]  Tuo-Hung Hou,et al.  Corrigendum: Optically initialized robust valley-polarized holes in monolayer WSe2 , 2016, Nature Communications.

[39]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[40]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[41]  L. Balents Weyl electrons kiss , 2011 .

[42]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[43]  Zhe Wang,et al.  Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride , 2015, Nature Communications.

[44]  A. Panchula,et al.  Magnetically engineered spintronic sensors and memory , 2003, Proc. IEEE.

[45]  C. Felser,et al.  Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP , 2015, 1512.04229.

[46]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[47]  Xiaoliang Qi,et al.  Recent developments in transport phenomena in Weyl semimetals , 2013, 1309.4464.

[48]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[49]  J. A. Logan,et al.  Observation of a topologically non-trivial surface state in half-Heusler PtLuSb (001) thin films , 2015, Nature Communications.

[50]  Hai-Zhou Lu,et al.  Negative magnetoresistance in Dirac semimetal Cd3As2 , 2015, Nature Communications.

[51]  Q. Gibson,et al.  The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. , 2016, Nature materials.

[52]  Binghai Yan,et al.  Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn , 2016, New Journal of Physics.

[53]  H. Weyl GRAVITATION AND THE ELECTRON. , 1929, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Su-Yang Xu,et al.  Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs. , 2015, Physical review letters.

[55]  Ott,et al.  Massive electron state in YbBiPt. , 1991, Physical review letters.

[56]  Su-Yang Xu,et al.  Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals. , 2016, Physical review letters.

[57]  S. Sarma,et al.  Axial anomaly and longitudinal magnetoresistance of a generic three dimensional metal , 2015, 1503.02069.

[58]  E. Bauer,et al.  Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs , 2015, 1506.01751.

[59]  S. Arnold,et al.  Ablation of hippocampal neurogenesis in mice impairs the response to stress during the dark cycle , 2015, Nature Communications.

[60]  N. Butch,et al.  Superconductivity in the topological semimetal YPtBi , 2011, 1109.0979.

[61]  M. Cinchetti,et al.  Topological states on the gold surface , 2015, Nature Communications.

[62]  Zhu-An Xu,et al.  Helicity protected ultrahigh mobility Weyl fermions in NbP , 2015, 1506.00924.

[63]  K. Yoshida A Geometrical Transport Model for Inhomogeneous Current Distribution in Semimetals under High Magnetic Fields , 1976 .

[64]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[65]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[66]  S. M. Walker,et al.  Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.

[67]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[68]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[69]  P. Canfield,et al.  Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.

[70]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[71]  Y. Pan,et al.  Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi , 2013, 1310.4592.

[72]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[73]  Yoichi Ando,et al.  Topological Insulator Materials , 2013, 1304.5693.

[74]  C. Chen,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2017, Nature communications.

[75]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[76]  Z. Fisk,et al.  Magnetism and heavy fermion-like behavior in the RBiPt series , 1991 .

[77]  E. Bauer,et al.  ‘Hard’ crystalline lattice in the Weyl semimetal NbAs , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[78]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[79]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[80]  Binghai Yan,et al.  Half-Heusler topological insulators , 2014, 1410.7011.

[81]  Yang Zhang,et al.  Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals. , 2016, Physical review letters.

[82]  D. Pesin,et al.  Chiral magnetic effect and natural optical activity in metals with or without Weyl points , 2015 .

[83]  Yan Sun,et al.  Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP , 2015, 1508.06649.

[84]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[85]  C. Felser,et al.  Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions , 2016, Science Advances.

[86]  Su-Yang Xu,et al.  Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 , 2013, Nature Communications.

[87]  A. Vishwanath,et al.  Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals , 2014, Nature Communications.

[88]  Y. Nakajima,et al.  Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors , 2015, Science Advances.

[89]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[90]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[91]  Chaoxing Liu,et al.  Prediction of a Weyl Semimetal in Hg$_{1-x-y}$Cd$_x$Mn$_y$Te , 2013, 1309.6327.

[92]  B Andrei Bernevig,et al.  Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys. , 2016, Physical review letters.

[93]  J. Sinova,et al.  Spin Hall effects , 2015 .

[94]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[95]  J. Kim,et al.  Magnetic order in GdBiPt studied by x-ray resonant magnetic scattering , 2011, 1109.3521.

[96]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[97]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[98]  Gang Xu,et al.  Dirac fermions in an antiferromagnetic semimetal , 2016, Nature Physics.

[99]  C. Felser,et al.  Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs. , 2016, Physical review letters.

[100]  Observation of Weyl nodes and Fermi arcs in tantalum phosphide , 2015, Nature communications.

[101]  The Quantum Spin Hall Effect , 2011 .

[102]  Lin Zhao,et al.  Electronic Evidence for Type II Weyl Semimetal State in MoTe2 , 2016, 1604.01706.

[103]  M Zahid Hasan,et al.  Three-Dimensional Topological Insulators , 2010, Annual Review of Condensed Matter Physics.

[104]  C. Felser,et al.  Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.

[105]  S. Muff,et al.  Observation of Fermi-Arc Spin Texture in TaAs. , 2015, Physical review letters.

[106]  Haijun Zhang,et al.  Symmetry-protected ideal Weyl semimetal in HgTe-class materials , 2015, Nature Communications.

[107]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[108]  C. Felser,et al.  Prediction of weak topological insulators in layered semiconductors. , 2012, Physical review letters.

[109]  Y. Nakajima,et al.  Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal , 2016, Science Advances.

[110]  Zu-Yan Xu,et al.  Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .

[111]  Zhijun Wang,et al.  Hourglass fermions , 2016, Nature.

[112]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[113]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[114]  C. Felser,et al.  Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y) , 2016, Nature Communications.

[115]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical review letters.

[116]  Ashvin Vishwanath,et al.  Dirac Fermions in Solids: From High-Tc Cuprates and Graphene to Topological Insulators and Weyl Semimetals , 2013, 1306.2272.

[117]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[118]  B. Lotsch,et al.  Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS , 2015, Nature Communications.

[119]  R. A. Muller,et al.  Magnetic structure of GdBiPt: A candidate antiferromagnetic topological insulator , 2014, 1406.6663.

[120]  I. Souza,et al.  Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface. , 2015, Physical review letters.

[121]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[122]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[123]  Su-Yang Xu,et al.  Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.

[124]  Shanjuan Jiang,et al.  Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal , 2016, Science.

[125]  S. Shen,et al.  Surface and edge states in topological semimetals , 2010, 1009.4289.

[126]  A. Grushin Consequences of a condensed matter realization of Lorentz violating QED in Weyl semi-metals , 2012, 1205.3722.

[127]  R. Car,et al.  Topological Nonsymmorphic Metals from Band Inversion , 2016 .

[128]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[129]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[130]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[131]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.