Yttrium Iron Garnet: Properties and Applications Review

Due to a fast progress in the development of communication systems, the dielectric and magnetic ceramics (ferrites) have become attractive to be used in devices. Although the ferrites of the spinel type were the first material to be used in the microwave range, garnets have smaller dielectric losses and, therefore, are chosen for many applications. High demands for modern electric applications in magnetic materials results in new techniques and products being permanently studied and researched, with a consequent appearance of new solutions for a wide applications series. This work presents the study of the ferrimagnetic composite, constituted by Y3Fe5O12 (YIG) and Gd3Fe5O12 (GdIG) phases, through solid state synthetic route and submitted to high-energy mechanical milling. Additionally, experiments were made in order to evaluate the electric and magnetic behavior of the composites at radio frequency and microwave range and then later suggest an adequate technological application. The composites were efficient as ferrite resonator antennas (FRAs) and microstrip antennas (thick films deposited on metalized surface alumina substrate by screen-printing technique), in the microwave frequency range. The experiments with FRAs showed satisfactory results due to the control of the antennas radiation characteristics and their tuning by the use of an external magnetic field. The composite resonators studied in this work can be important to the development of a third generation (3G) wideband antennas to cell phones and other wireless products.

[1]  A. J. Moulson,et al.  Electroceramics: Materials, Properties, Applications , 1990 .

[2]  W. Margulis,et al.  Optical and electrical properties of barium titanate-hydroxyapatite composite screen-printed thick films , 2004 .

[3]  Arthur B. Ellis,et al.  Teaching General Chemistry: A Materials Science Companion , 1993 .

[4]  A. Sombra,et al.  Composite screen‐printed thick films for high dielectric constant devices: Bi4Ti3O12–CaCu3Ti4O12 films , 2007 .

[5]  K. Zhao,et al.  Dielectric analysis of chitosan gel beads suspensions: influence of low crosslinking agent concentration on the dielectric behavior. , 2007, Journal of colloid and interface science.

[6]  M. Leoni,et al.  Reaction diffusion in the Y2O3-Fe2O3 system , 1997 .

[7]  J. Rivas,et al.  Ferromagnetic resonance and magnetic properties of single-domain particles of Y3Fe5O12 prepared by sol–gel method , 2004 .

[8]  L. H. Bowen,et al.  Mössbauer spectroscopy. , 1988, Analytical chemistry.

[9]  A. Sombra,et al.  On the physico-chemical and dielectric properties of glutaraldehyde crosslinked galactomannan–collagen films , 2004 .

[10]  J. W. Stewart,et al.  Synthesis, structure and vibrational properties of GdIGX:YIG1−X ferrimagnetic ceramic composite , 2009 .

[11]  E. Marzec,et al.  The effect of different methods of cross-linking of collagen on its dielectric properties. , 2008, Biophysical chemistry.

[12]  D. Bahadur Current trends in applications of magnetic ceramic materials , 1992 .

[13]  H A Kreutzmann,et al.  [Fundamentals of ceramics]. , 1972, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.

[14]  A. Sombra,et al.  Microstructure and magneto-dielectric properties of the chitosan/gelatin-YIG biocomposites , 2011 .

[15]  M. Valente,et al.  Dielectric properties of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films for high dielectric constant devices in the medium frequency (MF) range , 2004 .

[16]  A. Hudson Molecular engineering in the design of microwave ferrimagnetic garnets , 1970 .

[17]  R. Popielarz,et al.  Polymer composites with the dielectric constant comparable to that of barium titanate ceramics , 2007 .

[18]  J. Rivas,et al.  Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method , 2002 .

[19]  Ahmed A. Kishk,et al.  Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna , 1994 .

[20]  B. Jerslev,et al.  The crystal and molecular structure of anti-2,6-dimethyl-4-chloro-N-methylbenzaldoxime , 1969 .

[21]  Manuel Almeida Valente,et al.  Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO) , 2008 .

[22]  A. S. B. Sombra,et al.  Microstrip antenna on a high dielectric constant substrate: BaTiO3 (BTO)-CaCu3Ti4O12(CCTO) composite screen-printed thick films , 2006 .

[23]  D. Rousseau,et al.  Normal mode determination in crystals , 1981 .

[24]  D. Vandormael,et al.  Mössbauer Spectral Evidence for Rhombohedral Symmetry in R 3 Fe 5 O 12 Garnets with R = Y, Eu and Dy , 2001 .

[25]  I. Lin,et al.  Low temperature sintering of microwave magnetic garnet materials , 2002 .

[26]  Tachiro Tsushima,et al.  Faraday effect in (Pb2+, Th4+)-substituted magnetic garnets , 1998 .

[27]  Y. Kobayashi,et al.  Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method , 1985 .

[28]  M. Crosnier-Lopez,et al.  Synthesis and Characterization of Yttrium Iron Garnet Nanoparticles , 1996 .

[29]  Sho Zhang,et al.  Growth and characterization of rare-earth iron garnet single crystals modified by bismuth and ytterbium substituted for yttrium , 2002 .

[30]  Jun Ma,et al.  Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process , 2002 .

[31]  Y. Ahn,et al.  Synthesis of yttrium iron garnet precursor particles by homogeneous precipitation , 1996, Journal of Materials Science.

[32]  D. F. Linn,et al.  Ba2Ti9O20 as a Microwave Dielectric Resonator , 1975 .

[33]  N. F. Kartenko,et al.  High dielectric constant microwave ceramics , 2001 .

[34]  R. Lebourgeois,et al.  The electromagnetic properties of Cu-substituted garnets with low sintering temperature , 2007 .

[35]  S. Musić,et al.  Influence of synthesis procedure on the YIG formation , 2003 .

[36]  G. Maier Low dielectric constant polymers for microelectronics , 2001 .

[37]  J. Hanson,et al.  Synthesis of yttrium iron garnet (YIG) by citrate–nitrate gel combustion and precursor plasma spray processes , 2005 .

[38]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[39]  A. Sombra,et al.  BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas , 2006 .

[40]  D. Kajfex,et al.  Dielectric Resonators , 1986 .

[41]  Jyh-Chen Chen,et al.  Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic , 2006 .

[42]  A. Bhattacharya,et al.  Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders , 2006 .

[43]  Rodica Ramer,et al.  Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory , 2006 .

[44]  Ahmed A. Kishk,et al.  Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode , 1994 .

[45]  A. Sombra,et al.  Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGX–(Y3Fe5O12)YIG1−X , 2009 .

[47]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[48]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[49]  A. Sombra,et al.  Microstructure and magneto-dielectric properties of ferrimagnetic composite GdIGX:YIG1−X at radio and microwave frequencies , 2009 .

[50]  Yoshio Kobayashi,et al.  Fabrication and dielectric properties of the BaTiO3–polymer nano-composite thin films , 2008 .

[51]  L. Davis,et al.  Ferrite devices and materials , 2002 .

[52]  R. Grabovickic,et al.  Accurate calculations of geometrical factors of Hakki-Coleman shielded dielectric resonators , 1999, IEEE Transactions on Applied Superconductivity.

[53]  Hong Wang,et al.  Dielectric resonator antennas using high permittivity ceramics , 2004 .

[54]  J. Rivasb,et al.  Ferromagnetic resonance and magnetic properties of single-domain particles of Y 3 Fe 5 O 12 prepared by sol – gel method , 2004 .

[55]  A. Sombra,et al.  Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites , 2002 .

[56]  Y. Yao,et al.  The influence of Fe concentration on Y3Al5-xFexO12 garnets , 2005 .

[57]  C. Kim,et al.  Magnetic properties of Ce-substituted yttrium iron garnet ferrite powders fabricated using a sol–gel method , 2004 .

[58]  A. Sombra,et al.  New ferrimagnetic biocomposite film based in collagen and yttrium iron garnet , 2010 .

[59]  Tadashi Endo,et al.  Microwave Synthesis of Yttrium Iron Garnet Powder , 2005 .

[60]  A. Hofmeister,et al.  Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets , 1992 .

[61]  S. Mathur,et al.  Molecule Derived Synthesis of Nanocrystalline YFeO3 and Investigations on Its Weak Ferromagnetic Behavior , 2004 .

[62]  A. S. B. Sombra,et al.  Dielectric relaxation of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures , 2006 .

[63]  A. Paesano,et al.  Mechanosynthesis of Gadolinium Iron Garnet , 2005 .

[64]  A. Hudson REVIEW ARTICLE: Molecular engineering in the design of microwave ferrimagnetic garnets , 1970 .

[65]  Microstructural and electrical properties of PbTIO3 screen-printed thick films , 2007 .

[66]  R. Triboulet,et al.  Substrate issues for the growth of mercury cadmium telluride , 1993 .

[67]  Stuart A. Long,et al.  The resonant cylindrical dielectric cavity antenna , 1983 .