Yttrium Iron Garnet: Properties and Applications Review
暂无分享,去创建一个
A. S. B. Sombra | A. Sombra | P. Fechine | E. Mallmann | J. C. Góes | Pierre Basílio Almeida Fechine | E. J. J. Mallmann
[1] A. J. Moulson,et al. Electroceramics: Materials, Properties, Applications , 1990 .
[2] W. Margulis,et al. Optical and electrical properties of barium titanate-hydroxyapatite composite screen-printed thick films , 2004 .
[3] Arthur B. Ellis,et al. Teaching General Chemistry: A Materials Science Companion , 1993 .
[4] A. Sombra,et al. Composite screen‐printed thick films for high dielectric constant devices: Bi4Ti3O12–CaCu3Ti4O12 films , 2007 .
[5] K. Zhao,et al. Dielectric analysis of chitosan gel beads suspensions: influence of low crosslinking agent concentration on the dielectric behavior. , 2007, Journal of colloid and interface science.
[6] M. Leoni,et al. Reaction diffusion in the Y2O3-Fe2O3 system , 1997 .
[7] J. Rivas,et al. Ferromagnetic resonance and magnetic properties of single-domain particles of Y3Fe5O12 prepared by sol–gel method , 2004 .
[8] L. H. Bowen,et al. Mössbauer spectroscopy. , 1988, Analytical chemistry.
[9] A. Sombra,et al. On the physico-chemical and dielectric properties of glutaraldehyde crosslinked galactomannan–collagen films , 2004 .
[10] J. W. Stewart,et al. Synthesis, structure and vibrational properties of GdIGX:YIG1−X ferrimagnetic ceramic composite , 2009 .
[11] E. Marzec,et al. The effect of different methods of cross-linking of collagen on its dielectric properties. , 2008, Biophysical chemistry.
[12] D. Bahadur. Current trends in applications of magnetic ceramic materials , 1992 .
[13] H A Kreutzmann,et al. [Fundamentals of ceramics]. , 1972, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.
[14] A. Sombra,et al. Microstructure and magneto-dielectric properties of the chitosan/gelatin-YIG biocomposites , 2011 .
[15] M. Valente,et al. Dielectric properties of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films for high dielectric constant devices in the medium frequency (MF) range , 2004 .
[16] A. Hudson. Molecular engineering in the design of microwave ferrimagnetic garnets , 1970 .
[17] R. Popielarz,et al. Polymer composites with the dielectric constant comparable to that of barium titanate ceramics , 2007 .
[18] J. Rivas,et al. Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method , 2002 .
[19] Ahmed A. Kishk,et al. Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna , 1994 .
[20] B. Jerslev,et al. The crystal and molecular structure of anti-2,6-dimethyl-4-chloro-N-methylbenzaldoxime , 1969 .
[21] Manuel Almeida Valente,et al. Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO) , 2008 .
[22] A. S. B. Sombra,et al. Microstrip antenna on a high dielectric constant substrate: BaTiO3 (BTO)-CaCu3Ti4O12(CCTO) composite screen-printed thick films , 2006 .
[23] D. Rousseau,et al. Normal mode determination in crystals , 1981 .
[24] D. Vandormael,et al. Mössbauer Spectral Evidence for Rhombohedral Symmetry in R 3 Fe 5 O 12 Garnets with R = Y, Eu and Dy , 2001 .
[25] I. Lin,et al. Low temperature sintering of microwave magnetic garnet materials , 2002 .
[26] Tachiro Tsushima,et al. Faraday effect in (Pb2+, Th4+)-substituted magnetic garnets , 1998 .
[27] Y. Kobayashi,et al. Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method , 1985 .
[28] M. Crosnier-Lopez,et al. Synthesis and Characterization of Yttrium Iron Garnet Nanoparticles , 1996 .
[29] Sho Zhang,et al. Growth and characterization of rare-earth iron garnet single crystals modified by bismuth and ytterbium substituted for yttrium , 2002 .
[30] Jun Ma,et al. Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process , 2002 .
[31] Y. Ahn,et al. Synthesis of yttrium iron garnet precursor particles by homogeneous precipitation , 1996, Journal of Materials Science.
[32] D. F. Linn,et al. Ba2Ti9O20 as a Microwave Dielectric Resonator , 1975 .
[33] N. F. Kartenko,et al. High dielectric constant microwave ceramics , 2001 .
[34] R. Lebourgeois,et al. The electromagnetic properties of Cu-substituted garnets with low sintering temperature , 2007 .
[35] S. Musić,et al. Influence of synthesis procedure on the YIG formation , 2003 .
[36] G. Maier. Low dielectric constant polymers for microelectronics , 2001 .
[37] J. Hanson,et al. Synthesis of yttrium iron garnet (YIG) by citrate–nitrate gel combustion and precursor plasma spray processes , 2005 .
[38] R. Bansal,et al. Antenna theory; analysis and design , 1984, Proceedings of the IEEE.
[39] A. Sombra,et al. BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas , 2006 .
[40] D. Kajfex,et al. Dielectric Resonators , 1986 .
[41] Jyh-Chen Chen,et al. Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic , 2006 .
[42] A. Bhattacharya,et al. Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders , 2006 .
[43] Rodica Ramer,et al. Electric field tunable ferrite-ferroelectric hybrid wave microwave resonators: Experiment and theory , 2006 .
[44] Ahmed A. Kishk,et al. Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode , 1994 .
[45] A. Sombra,et al. Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGX–(Y3Fe5O12)YIG1−X , 2009 .
[47] R. Kaul,et al. Microwave engineering , 1989, IEEE Potentials.
[48] C. Nan,et al. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.
[49] A. Sombra,et al. Microstructure and magneto-dielectric properties of ferrimagnetic composite GdIGX:YIG1−X at radio and microwave frequencies , 2009 .
[50] Yoshio Kobayashi,et al. Fabrication and dielectric properties of the BaTiO3–polymer nano-composite thin films , 2008 .
[51] L. Davis,et al. Ferrite devices and materials , 2002 .
[52] R. Grabovickic,et al. Accurate calculations of geometrical factors of Hakki-Coleman shielded dielectric resonators , 1999, IEEE Transactions on Applied Superconductivity.
[53] Hong Wang,et al. Dielectric resonator antennas using high permittivity ceramics , 2004 .
[54] J. Rivasb,et al. Ferromagnetic resonance and magnetic properties of single-domain particles of Y 3 Fe 5 O 12 prepared by sol – gel method , 2004 .
[55] A. Sombra,et al. Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites , 2002 .
[56] Y. Yao,et al. The influence of Fe concentration on Y3Al5-xFexO12 garnets , 2005 .
[57] C. Kim,et al. Magnetic properties of Ce-substituted yttrium iron garnet ferrite powders fabricated using a sol–gel method , 2004 .
[58] A. Sombra,et al. New ferrimagnetic biocomposite film based in collagen and yttrium iron garnet , 2010 .
[59] Tadashi Endo,et al. Microwave Synthesis of Yttrium Iron Garnet Powder , 2005 .
[60] A. Hofmeister,et al. Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets , 1992 .
[61] S. Mathur,et al. Molecule Derived Synthesis of Nanocrystalline YFeO3 and Investigations on Its Weak Ferromagnetic Behavior , 2004 .
[62] A. S. B. Sombra,et al. Dielectric relaxation of BaTiO3 (BTO)–CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures , 2006 .
[63] A. Paesano,et al. Mechanosynthesis of Gadolinium Iron Garnet , 2005 .
[64] A. Hudson. REVIEW ARTICLE: Molecular engineering in the design of microwave ferrimagnetic garnets , 1970 .
[65] Microstructural and electrical properties of PbTIO3 screen-printed thick films , 2007 .
[66] R. Triboulet,et al. Substrate issues for the growth of mercury cadmium telluride , 1993 .
[67] Stuart A. Long,et al. The resonant cylindrical dielectric cavity antenna , 1983 .