Fractional-order comprehensive learning marine predators algorithm for global optimization and feature selection

[1]  Neeraj Kumar,et al.  Energy-Aware Marine Predators Algorithm for Task Scheduling in IoT-Based Fog Computing Applications , 2021, IEEE Transactions on Industrial Informatics.

[2]  Ahmed Gomaa Radwan,et al.  A Grunwald-Letnikov based Manta ray foraging optimizer for global optimization and image segmentation , 2021, Eng. Appl. Artif. Intell..

[3]  Hany M. Hasanien,et al.  Parameters identification of solid oxide fuel cell for static and dynamic simulation using comprehensive learning dynamic multi-swarm marine predators algorithm , 2021 .

[4]  Mohammed A. A. Al-qaness,et al.  Reliable applied objective for identifying simple and detailed photovoltaic models using modern metaheuristics: Comparative study , 2020 .

[5]  R. Madhu,et al.  Cat Swarm Fractional Calculus optimization-based deep learning for artifact removal from EEG signal , 2020, J. Exp. Theor. Artif. Intell..

[6]  Huiling Chen,et al.  Slime mould algorithm: A new method for stochastic optimization , 2020, Future Gener. Comput. Syst..

[7]  Amir H. Gandomi,et al.  Marine Predators Algorithm: A nature-inspired metaheuristic , 2020, Expert Syst. Appl..

[8]  Dalia Yousri,et al.  An Improved Marine Predators Algorithm With Fuzzy Entropy for Multi-Level Thresholding: Real World Example of COVID-19 CT Image Segmentation , 2020, IEEE Access.

[9]  Dalia Yousri,et al.  Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation , 2020, Knowl. Based Syst..

[10]  Dalia Yousri,et al.  Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems , 2020, Eng. Appl. Artif. Intell..

[11]  Mohammed A A Al-Qaness,et al.  Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea , 2020, International journal of environmental research and public health.

[12]  Diego Oliva,et al.  Fractional Lévy flight bat algorithm for global optimisation , 2020, Int. J. Bio Inspired Comput..

[13]  Mohamed Abd Elaziz,et al.  Performance analysis of Chaotic Multi-Verse Harris Hawks Optimization: A case study on solving engineering problems , 2020, Eng. Appl. Artif. Intell..

[14]  Dalia Yousri,et al.  A Robust Strategy Based on Marine Predators Algorithm for Large Scale Photovoltaic Array Reconfiguration to Mitigate the Partial Shading Effect on the Performance of PV System , 2020, IEEE Access.

[15]  Mohamed Elhoseny,et al.  A Hybrid COVID-19 Detection Model Using an Improved Marine Predators Algorithm and a Ranking-Based Diversity Reduction Strategy , 2020, IEEE Access.

[16]  Liying Wang,et al.  Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications , 2020, Eng. Appl. Artif. Intell..

[17]  Seyedali Mirjalili,et al.  Henry gas solubility optimization: A novel physics-based algorithm , 2019, Future Gener. Comput. Syst..

[18]  Weiguo Zhao,et al.  Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm , 2019, Neural Computing and Applications.

[19]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[20]  Wei Sun,et al.  Adaptive comprehensive learning particle swarm optimization with cooperative archive , 2019, Appl. Soft Comput..

[21]  Ponnuthurai Nagaratnam Suganthan,et al.  Static and dynamic photovoltaic models’ parameters identification using Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants , 2019, Energy Conversion and Management.

[22]  Songfeng Lu,et al.  Improved salp swarm algorithm based on particle swarm optimization for feature selection , 2018, Journal of Ambient Intelligence and Humanized Computing.

[23]  Yuhui Shi,et al.  Metaheuristic research: a comprehensive survey , 2018, Artificial Intelligence Review.

[24]  Ahmed A. Ewees,et al.  Improved grasshopper optimization algorithm using opposition-based learning , 2018, Expert Syst. Appl..

[25]  Haibin Duan,et al.  Fractional-order controllers optimized via heterogeneous comprehensive learning pigeon-inspired optimization for autonomous aerial refueling hose–drogue system , 2018, Aerospace Science and Technology.

[26]  Songfeng Lu,et al.  Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization , 2018, Expert Syst. Appl..

[27]  Alireza Alfi,et al.  Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems , 2018, Chaos, Solitons & Fractals.

[28]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[29]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[30]  Xueqing Zhang,et al.  Optimal operation of multi-reservoir hydropower systems using enhanced comprehensive learning particle swarm optimization , 2016 .

[31]  Vimal Savsani,et al.  Passing vehicle search (PVS): A novel metaheuristic algorithm , 2016 .

[32]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[33]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[34]  Stjepan Oreski,et al.  Genetic algorithm-based heuristic for feature selection in credit risk assessment , 2014, Expert Syst. Appl..

[35]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[36]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[37]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[38]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[39]  Siamak Talatahari,et al.  An improved ant colony optimization for constrained engineering design problems , 2010 .

[40]  S. Gholizadeh,et al.  OPTIMAL DESIGN OF STRUCTURES SUBJECTED TO TIME HISTORY LOADING BY SWARM INTELLIGENCE AND AN ADVANCED METAMODEL , 2009 .

[41]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[42]  Carlos A. Coello Coello,et al.  An empirical study about the usefulness of evolution strategies to solve constrained optimization problems , 2008, Int. J. Gen. Syst..

[43]  Rajiv Tiwari,et al.  Multi-objective design optimisation of rolling bearings using genetic algorithms , 2007 .

[44]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[45]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[46]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[47]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[48]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[49]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[50]  Yu-Chi Ho,et al.  Simple Explanation of the No Free Lunch Theorem of Optimization , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[51]  Tapabrata Ray,et al.  ENGINEERING DESIGN OPTIMIZATION USING A SWARM WITH AN INTELLIGENT INFORMATION SHARING AMONG INDIVIDUALS , 2001 .

[52]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[53]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[54]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[55]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[56]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[57]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[58]  J. Arora,et al.  A study of mathematical programmingmethods for structural optimization. Part II: Numerical results , 1985 .

[59]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .