On the austenite stability of cryogenic Ni steels: microstructural effects: a review

[1]  Hao Yu,et al.  Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution , 2021 .

[2]  O. Umezawa,et al.  Tensile properties and deformation behavior of ferrite and austenite duplex stainless steel at cryogenic temperatures , 2021, Materials Science & Engineering: A.

[3]  S. Zwaag,et al.  Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite , 2021, Materials Science and Engineering: R: Reports.

[4]  D. Seidman,et al.  Temperature increases and thermoplastic microstructural evolution in adiabatic shear bands in a high-strength and high-toughness 10 wt.% Ni steel , 2020 .

[5]  D. Seidman,et al.  Temperature Increases and Thermoplastic Microstructural Evolution in Adiabatic Shear-Bands in a High-Strength and High-Toughness 10 wt.% Ni Steel , 2020, 2010.09980.

[6]  W. Xu,et al.  Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system , 2020 .

[7]  W. Cao,et al.  Austenite stability and deformation-induced transformation mechanism in cold-rolled medium-Mn steel , 2020 .

[8]  Binbin He On the Factors Governing Austenite Stability: Intrinsic versus Extrinsic , 2020, Materials.

[9]  B. Gault,et al.  Microstructural Evolution in an Fe-10Ni-0.1C Steel During Heat Treatment and High Strain-Rate Deformation , 2020, Metallurgical and Materials Transactions A.

[10]  H. Inoue,et al.  Relationship between solidification sequence and toughness of carbon steel weld metal , 2020 .

[11]  Qing-dong Liu,et al.  Nano-sized austenite and Cu precipitates formed by using intercritical tempering plus tempering and their effect on the mechanical property in a low carbon Cu bearing 7 Ni steel , 2020 .

[12]  Qi-yuan Chen,et al.  Influence of Intercritical Temperature on the Microstructure and Mechanical Properties of 6.5 Pct Ni Steel Processed by Ultra-fast Cooling, Intercritical Quenching and Tempering , 2020, Metallurgical and Materials Transactions A.

[13]  T. Suo,et al.  High temperature creep resistance of a thermally stable nanocrystalline Fe-5 at.% Zr steel , 2020 .

[14]  Z. R. Zhang,et al.  In situ observation of remelting induced anomalous eutectic structure formation in an undercooled Ni-18.7 at.% Sn eutectic alloy , 2020 .

[15]  D. Raabe,et al.  Carbon partitioning and microstructure evolution during tempering of an Fe-Ni-C steel , 2019, Scripta Materialia.

[16]  Qi-yuan Chen,et al.  Correlation between reversed austenite and mechanical properties in a low Ni steel treated by ultra-fast cooling, intercritical quenching and tempering , 2019, Journal of Materials Science.

[17]  Hao Chen,et al.  Revealing the role of dislocations on the stability of retained austenite in a tempered bainite , 2019, Scripta Materialia.

[18]  L. Du,et al.  Fracture toughness behavior of low-C medium-Mn high-strength steel with submicron-scale laminated microstructure of tempered martensite and reversed austenite , 2019, Journal of Materials Science.

[19]  Dongpo Wang,et al.  Strength-toughness improvement of martensite-austenite dual phase deposited metals after austenite reversed treatment with short holding time , 2019, Materials Science and Engineering: A.

[20]  Guang Xu,et al.  Effects of Initial Austenite Grain Size on Microstructure and Mechanical Properties of 5% Nickel Cryogenic Steel , 2019, Metallography, Microstructure, and Analysis.

[21]  L. Du,et al.  Effect of austenite stability on toughness, ductility, and work-hardening of medium-Mn steel , 2018, Materials Science and Technology.

[22]  Chenghao Song,et al.  Stress partitioning among ferrite, martensite and retained austenite of a TRIP-assisted multiphase steel: An in-situ high-energy X-ray diffraction study , 2018 .

[23]  Hongwei Cao,et al.  Influence of Nb Content on Microstructure and Mechanical Properties of a 7%Ni Steel , 2018, Acta Metallurgica Sinica (English Letters).

[24]  E. Bychkov,et al.  Advanced characterization of cryogenic 9Ni steel using synchrotron radiation, neutron scattering and 57Fe Mössbauer spectroscopy , 2018 .

[25]  D. Nakanishi,et al.  Effect of dispersed retained γ-Fe on brittle crack arrest toughness in 9% Ni steel in cryogenic temperatures , 2018 .

[26]  Hongwei Cao,et al.  Effect of Mn Content on Microstructure and Cryogenic Mechanical Properties of a 7% Ni Steel , 2018, Acta Metallurgica Sinica (English Letters).

[27]  D. Seidman,et al.  Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding , 2017, Metallurgical and Materials Transactions A.

[28]  Zhen-Yu Liu,et al.  The Role of Retained Austenite on the Mechanical Properties of a Low Carbon 3Mn-1.5Ni Steel , 2017, Metallurgical and Materials Transactions A.

[29]  H. Cao,et al.  Effect of Intercritical Quenching on the Microstructure and Cryogenic Mechanical Properties of a 7 Pct Ni Steel , 2017, Metallurgical and Materials Transactions A.

[30]  Zhenyu Liu,et al.  Effects of Ultra-Fast Cooling After Hot Rolling and Intercritical Treatment on Microstructure and Cryogenic Toughness of 3.5%Ni Steel , 2017, Journal of Materials Engineering and Performance.

[31]  D. Seidman,et al.  Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel , 2017, Metallurgical and Materials Transactions A.

[32]  S. V. Bohemen,et al.  Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size , 2017 .

[33]  R. Misra,et al.  Grain refinement in surface layers through deformation-induced ferrite transformation in microalloyed steel plate , 2017 .

[34]  Young‐kook Lee,et al.  The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel , 2017 .

[35]  Cheng-gang Li,et al.  Correlations of Ni Contents, Formation of Reversed Austenite and Toughness for Ni-Containing Cryogenic Steels , 2017, Acta Metallurgica Sinica (English Letters).

[36]  Suiyuan Chen,et al.  Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate , 2016 .

[37]  T. Tsuchiyama,et al.  Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation , 2016 .

[38]  D. Martinazzi,et al.  The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels , 2016 .

[39]  E. Lavernia,et al.  Effect of Multistage Heat Treatment on Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel , 2016, Metallurgical and Materials Transactions A.

[40]  Jun Chen,et al.  Influence of Heat Treatments on the Microstructural Evolution and Resultant Mechanical Properties in a Low Carbon Medium Mn Heavy Steel Plate , 2016, Metallurgical and Materials Transactions A.

[41]  Caifu Yang,et al.  Ni segregation and thermal stability of reversed austenite in a Fe–Ni alloy processed by QLT heat treatment , 2015, Rare Metals.

[42]  J. Krawczyk,et al.  Fracture toughness of steels with nickel content in respect of carbide morphology , 2015 .

[43]  L. Murr,et al.  Relationship of grain size and deformation mechanism to the fracture behavior in high strength–high ductility nanostructured austenitic stainless steel , 2015 .

[44]  C. Tasan,et al.  Nanolaminate Transformation-Induced Plasticity-Twinning-Induced Plasticity steel with Dynamic Strain Partitioning and Enhanced damage Resistance , 2015 .

[45]  R. Misra,et al.  Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content , 2015 .

[46]  Jonathan P. Wright,et al.  Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading , 2014 .

[47]  G. Haidemenopoulos,et al.  Kinetics of strain-induced transformation of dispersed austenite in low-alloy TRIP steels , 2014 .

[48]  A. Zhao,et al.  A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel , 2014 .

[49]  Wei Xu,et al.  Increase of martensite start temperature after small deformation of austenite , 2014 .

[50]  A. Khachaturyan,et al.  The microstructure of lath martensite in quenched 9Ni steel , 2014 .

[51]  Young‐kook Lee,et al.  The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels , 2014 .

[52]  H. Bhadeshia,et al.  Optimizing the Morphology and Stability of Retained Austenite in a δ-TRIP Steel , 2014, Metallurgical and Materials Transactions A.

[53]  Bing-xin Wang,et al.  Effect of microstructure on low-temperature toughness of a low carbon Nb–V–Ti microalloyed pipeline steel , 2014 .

[54]  T. Tsuchiyama,et al.  Effect of Grain Size on Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel , 2013 .

[55]  Fucheng Zhang,et al.  Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels , 2013 .

[56]  D. Seidman,et al.  Nanoscale Analyses of High-Nickel Concentration Martensitic High-Strength Steels , 2013, Metallurgical and Materials Transactions A.

[57]  Bing Chen,et al.  The effect of morphology on the stability of retained austenite in a quenched and partitioned steel , 2013 .

[58]  Y. Adachi,et al.  Microstructure and cleavage in lath martensitic steels , 2013, Science and technology of advanced materials.

[59]  Y. Kim ON THE STABILITY OF PRECIPITATED AUSTENITE AND THE TOUGHNESS OF 9Ni STEEL , 2013 .

[60]  Q. Shen,et al.  Influence of QLT treatment on microstructure and mechanical properties of a high nickel steel , 2013 .

[61]  L. Rong,et al.  Compression Stability of Reversed Austenite in 9Ni Steel , 2012 .

[62]  S. V. Bohemen Bainite and martensite start temperature calculated with exponential carbon dependence , 2012 .

[63]  C. India Mechanical Behavior Of Materials 2nd Ed , 2012 .

[64]  Sunghak Lee,et al.  Effects of Cooling Conditions on Microstructure, Tensile Properties, and Charpy Impact Toughness of Low-Carbon High-Strength Bainitic Steels , 2012, Metallurgical and Materials Transactions A.

[65]  Nobuyuki Yoshimura,et al.  Change in dislocation mobility with ni content in ferritic steels and its effect on brittle-to-ductile transition , 2012 .

[66]  Jonathan P. Wright,et al.  High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels , 2012 .

[67]  H. Bhadeshia,et al.  Thermal stability of retained austenite in bainitic steel: an in situ study , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[68]  Byung Jun Kim,et al.  Effects of cold work and phosphorous on the ductile to brittle transition behavior of F82H steels , 2011 .

[69]  J. W. Morris On the Ductile-Brittle Transition in Lath Martensitic Steel , 2011 .

[70]  K. Hono,et al.  Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel , 2011 .

[71]  王青峰,et al.  Effect of Tempering Temperature on Microstructure and Mechanical Properties of Steel Containing Ni of 9 , 2011 .

[72]  Motoyuki Asada,et al.  Reducing the Economic Risk of LNG Tank Construction under Conditions of Fluctuating Resource Prices , 2011 .

[73]  D. Matlock,et al.  Austenite stabilization through manganese enrichment , 2011 .

[74]  Hitoshi Hirose,et al.  Development of 7%Ni-TMCP Steel Plate for LNG Storage Tanks , 2010 .

[75]  Hui-bin Wu,et al.  Precipitation and stability of reversed austenite in 9Ni steel , 2010 .

[76]  D. Suh,et al.  Strain partitioning and mechanical stability of retained austenite , 2010 .

[77]  J. Krawczyk,et al.  The effect of carbide precipitate morphology on fracture toughness in low‐tempered steels containing Ni , 2010, Journal of microscopy.

[78]  K. Tsuzaki,et al.  Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling , 2010 .

[79]  K. Sugimoto Fracture strength and toughness of ultra high strength TRIP aided steels , 2009 .

[80]  H. K. D. H. Bhadeshia,et al.  Austenite grain size and the martensite-start temperature , 2009 .

[81]  Marc André Meyers,et al.  Mechanical Behavior of Materials (2nd ed.) , 2009 .

[82]  Jonathan P. Wright,et al.  The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels , 2009 .

[83]  C. Capdevila,et al.  Effects of Morphology and Stability of Retained Austenite on the Ductility of TRIP-aided Bainitic Steels , 2008 .

[84]  J. W. Morris Comments on the Microstructure and Properties of Ultrafine Grained Steel , 2008 .

[85]  L.-Q. Weng,et al.  An Auger electron spectroscopy study of phosphorus and molybdenum grain boundary segregation in a 2.25Cr1Mo steel , 2008 .

[86]  Francisca García Caballero,et al.  Dependence of martensite start temperature on fine austenite grain size , 2008 .

[87]  Caifu Yang,et al.  Effect of Intercritical Quenching on Reversed Austenite Formation and Cryogenic Toughness in QLT-Processed 9% Ni Steel , 2007 .

[88]  Jonathan P. Wright,et al.  Martensitic transformation of individual grains in low-alloyed TRIP steels , 2007 .

[89]  L. Weng,et al.  Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr–Mo low-alloy steel , 2005 .

[90]  Seok-Jae Lee,et al.  Effect of Austenite Grain Size on Martensitic Transformation of a Low Alloy Steel , 2005 .

[91]  T. Tsuchiyama,et al.  Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel , 2004 .

[92]  T. Tsuchiyama,et al.  Improvement of strength-ductility balance by copper addition in 9%Ni steels , 2004 .

[93]  Tae-Ho Lee,et al.  Effects of volume fraction and stability of retained austenite on formability in a 0.1C–1.5Si–1.5Mn–0.5Cu TRIP-aided cold-rolled steel sheet , 2004 .

[94]  Manabu Hoshino,et al.  Development of Super-9%Ni Steel Plates with Superior Low-Temperature Toughness for LNG Storage Tanks , 2004 .

[95]  K. Bowman Mechanical Behavior of Materials , 2003 .

[96]  Z. Guo,et al.  The Nature and Consequences of Coherent Transformations in Steel , 2003 .

[97]  F. Delannay,et al.  On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels , 2001 .

[98]  Y. Chang,et al.  Kinetics of deformation induced martensitic transformation in a 304 stainless steel , 2001 .

[99]  J. W. Morris,et al.  The Limits of Strength and Toughness in Steel , 2001 .

[100]  C. Liu,et al.  A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels , 2001 .

[101]  S. Zwaag,et al.  Stabilization mechanisms of retained austenite in transformation-induced plasticity steel , 2001 .

[102]  Gregory B Olson,et al.  Computational thermodynamics and the kinetics of martensitic transformation , 2001 .

[103]  K. Ishida Calculation of the effect of alloying elements on the Ms temperature in steels , 1995 .

[104]  Gregory B Olson,et al.  Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation , 1994 .

[105]  K. Sugimoto,et al.  Effects of Second Phase Morphology on Retained Austenite Morphology and Tensile Properties in a TRIP-aided Dual-phase Steel Sheet , 1993 .

[106]  D. Matlock,et al.  Intercritically annealed and isothermally transformed 0.15 Pct C steels containing 1.2 Pct Si-1.5 Pct Mn and 4 Pct Ni: Part II. effect of testing temperature on stress-strain behavior and deformation-induced austenite transformation , 1992 .

[107]  H. Bhadeshia,et al.  A Model for the Microstructure of Some Advanced Bainitic Steels , 1991 .

[108]  B. Fultz,et al.  The mechanical stability of precipitated austenite in 9Ni steel , 1985 .

[109]  T. Hsu An approximate approach for the calculation ofMs in iron-base alloys , 1985 .

[110]  H. -. Kim,et al.  The role of the constituent phases in determining the low temperature toughness of 5.5Ni cryogenic steel , 1984 .

[111]  D. Frear,et al.  A study of the effect of precipitated austenite on the fracture of a ferritic cryogenic steel , 1984 .

[112]  T. Hsu,et al.  On thermodynamic calculation of MS and on driving force for martensitic transformations in Fe-C , 1983 .

[113]  H. K. D. H. Bhadeshia,et al.  Bainite in silicon steels: New composition–property approach Part 1 , 1983 .

[114]  G. Chang AUSTENITE STABILITY AND ITS INFLUENCE ON MECHANICAL PROPERTIES OF 18-8 STAINLESS STEEL AT CRYOGENIC TEMPERATURES , 1983 .

[115]  C. Syn,et al.  Microstructural sources of toughness in QLT-Treated 5.5Ni cryogenic steel , 1983 .

[116]  H. Bhadeshia,et al.  Bainite: An atom-probe study of the incomplete reaction phenomenon , 1982 .

[117]  J. Kim,et al.  The composition of precipitated austenite in 5.5ni steel , 1981 .

[118]  H. Bhadeshia Thermodynamic extrapolation and martensite-start temperature of substitutionally alloyed steels , 1981 .

[119]  J. Kim,et al.  On the scavenging effect of precipitated austenite in a low carbon Fe-5.5Ni alloy , 1980 .

[120]  Dann. E. Passoja,et al.  The effect of heat treatment on microstructure and cryogenic fracture properties in 5Ni and 9Ni steel , 1980 .

[121]  L.-Å. Norström,et al.  Influence of nickel on toughness and ductile-brittle transition in low-carbon martensite steels , 1979 .

[122]  B. Fultz,et al.  Mechanical stability of retained austenite in tempered 9Ni steel , 1978 .

[123]  K. J. Kim,et al.  On the effects of intercritical tempering on the impact energy of Fe9Ni0.1C , 1978 .

[124]  S. Hwang,et al.  A study of retained austenite in a fine-grained Fe-12Ni-0.25Ti alloy , 1975 .

[125]  Sungho Jin,et al.  The effect of grain size and retained austenite on the ductile-brittle transition of a titanium-gettered iron alloy , 1975 .

[126]  C. Ahlquist On the interaction of cleavage cracks with second phase particles , 1975 .

[127]  D. Kalish,et al.  The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel , 1974, Metallurgical and Materials Transactions B.

[128]  G. B. Olson,et al.  A MECHANISM FOR THE STRAIN-INDUCED NUCLEATION OF MARTENSITIC TRANSFORMATIONS* , 1972 .

[129]  R. Arsenault The double-kink model for low-temperature deformation of B.C.C. metals and solid solutions , 1967 .

[130]  Larry Kaufman,et al.  Thermodynamics and kinetics of martensitic transformations , 1958 .

[131]  Morris Cohen,et al.  Criterion for the action of applied stress in the martensitic transformation , 1953 .