FUZZY CLUSTER MULTIPLE CORRESPONDENCE ANALYSIS

Multiple correspondence analysis (MCA) is a useful tool for exploring the interdependencies among multiple-choice variables. However, MCA is not geared for explicitly investigating whether or not heterogeneous subgroups of respondents exist in the population with qualitatively distinct patterns of choice behaviour. In this paper, we extend MCA to capture such cluster-level heterogeneity. Specifically, the proposed method combines MCA with fuzzy k-means simultaneously. Consequently, it can provide a single map of displaying variable-level and cluster-level structures so as to facilitate the interpretation of the underlying structures. The performance of the proposed method in recovering true coordinates is investigated based on a Monte Carlo study involving synthetic data. In addition, two empirical applications are presented which compare the proposed method to two extant approaches that combine MCA and cluster analysis.

[1]  B. L. Roux,et al.  Multiple Correspondence Analysis , 2009 .

[2]  Hidetomo Ichihashi,et al.  Quantification of Multivariate Categorical Data Considering Typicality of Item , 2007, J. Adv. Comput. Intell. Intell. Informatics.

[3]  Sungjin Hong,et al.  Bootstrap scree tests: a Monte Carlo simulation and applications to published data. , 2006, The British journal of mathematical and statistical psychology.

[4]  Heungsun Hwang,et al.  An Extension of Multiple Correspondence Analysis for Identifying Heterogeneous Subgroups of Respondents , 2006 .

[5]  Maurizio Vichi,et al.  Three-Mode Component Analysis with Crisp or Fuzzy Partition of Units , 2005 .

[6]  Hidetomo Ichihashi,et al.  Quantification of Multivariate Categorical Data Considering Clusters of Items and Individuals , 2005, MDAI.

[7]  Frank M. Marchak,et al.  Design quality , 2002 .

[8]  Heungsun Hwang,et al.  Generalized constrained multiple correspondence analysis , 2002 .

[9]  C. Aldwin,et al.  Longitudinal findings from the Normative Aging Study: III. Personality, individual health trajectories, and mortality. , 2001, Psychology and aging.

[10]  H. Kiers,et al.  Factorial k-means analysis for two-way data , 2001 .

[11]  George Arimond,et al.  A Clustering Method for Categorical Data in Tourism Market Segmentation Research , 2001 .

[12]  L. Singh,et al.  Vocabulary growth in late talkers: lexical development from 2;0 to 3;0 , 2000, Journal of Child Language.

[13]  Jan de Leeuw,et al.  Multilevel homogeneity analysis with differential weighting , 2000 .

[14]  Hidetomo Ichihashi,et al.  Simultaneous application of clustering and correspondence analysis , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[15]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[16]  P. Groenen,et al.  Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima , 1997 .

[17]  W. DeSarbo,et al.  Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity , 1997 .

[18]  W. Kamakura,et al.  Modeling Preference and Structural Heterogeneity in Consumer Choice , 1996 .

[19]  R. Bagozzi Advanced Methods of Marketing Research , 1994 .

[20]  T. Moffitt Adolescence-limited and life-course-persistent antisocial behavior: a developmental taxonomy. , 1993, Psychological review.

[21]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[22]  M. Wedel,et al.  A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation , 1991 .

[23]  W. DeSarbo,et al.  Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups , 1991 .

[24]  A. Gifi,et al.  NONLINEAR MULTIVARIATE ANALYSIS , 1990 .

[25]  W. Heiser,et al.  Clusteringn objects intok groups under optimal scaling of variables , 1989 .

[26]  Alex B. McBratney,et al.  Application of fuzzy sets to climatic classification , 1985 .

[27]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[28]  Wei-Chien Chang On using Principal Components before Separating a Mixture of Two Multivariate Normal Distributions , 1983 .

[29]  R. Bagozzi A Field Investigation of Causal Relations among Cognitions, Affect, Intentions, and Behavior , 1982 .

[30]  M. Roubens Fuzzy clustering algorithms and their cluster validity , 1982 .

[31]  Gilbert Saporta,et al.  L'analyse des données , 1981 .

[32]  P. Arabie,et al.  Overlapping Clustering: A New Method for Product Positioning , 1981 .

[33]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[34]  J. Bezdek,et al.  Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof , 1981 .

[35]  G. M. Southward,et al.  Analysis of Categorical Data: Dual Scaling and Its Applications , 1981 .

[36]  Yoram Wind,et al.  Issues and Advances in Segmentation Research , 1978 .

[37]  Forrest W. Young,et al.  Additive structure in qualitative data: An alternating least squares method with optimal scaling features , 1976 .

[38]  S. Mulaik Foundations of Factor Analysis , 1975 .

[39]  J. Bezdek Numerical taxonomy with fuzzy sets , 1974 .

[40]  L. Tucker A METHOD FOR SYNTHESIS OF FACTOR ANALYSIS STUDIES , 1951 .

[41]  Arnon Karnieli,et al.  Linear mixture model approach for selecting fuzzy exponent value in fuzzy c-means algorithm , 2006, Ecol. Informatics.

[42]  H. Abdi,et al.  Multiple Correspondence Analysis , 2006 .

[43]  Hans-Joachim Mucha,et al.  An Intelligent Clustering Technique Based on Dual Scaling , 2002 .

[44]  B. L. Roux,et al.  Interpreting Axes in Multiple Correspondence Analysis: Method of the Contributions of Points and Deviations , 1998 .

[45]  H. Yanai,et al.  Generalized Canonical Correlation Analysis with Linear Constraints , 1998 .

[46]  Hans-Hermann Bock,et al.  Data Science, Classification and Related Methods , 1998 .

[47]  P. Arabie,et al.  Cluster analysis in marketing research , 1994 .

[48]  J. Carroll,et al.  K-means clustering in a low-dimensional Euclidean space , 1994 .

[49]  L. Lebart,et al.  Complementary use of correspondence analysis and cluster analysis , 1994 .

[50]  M. Wedel,et al.  A fuzzy clusterwise regression approach to benefit segmentation , 1989 .

[51]  H. Hruschka Market definition and segmentation using fuzzy clustering methods , 1986 .

[52]  A. Morineau,et al.  Multivariate descriptive statistical analysis , 1984 .

[53]  西里 静彦,et al.  Analysis of categorical data : dual scaling and its applications , 1980 .

[54]  J. P. Benzécri,et al.  Sur le calcul des taux d'inertie dans l'analyse d'un questionnaire, addendum et erratum à [BIN. MULT.] , 1979 .

[55]  P. Arabie Clustering representations of group overlap , 1977 .

[56]  J. Dunn A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[57]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[58]  F. Bon,et al.  L'ouvrier français en 1970 , 1970 .