Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5- mu m traveling-wave semiconductor laser amplifier

The optical nonlinearity in a semiconductor laser gain medium is investigated through copropagating nearly degenerate four-wave mixing (NDFWM) in a 1.5- mu m InGaAsP traveling-wave laser amplifier (TWA). The FWM signal output powers vary symmetrically with the sign of probe detuning with respect to the pump frequency, while the pump and probe output powers vary asymmetrically. The NDFWM conversion efficiency from the probe input to the FWM signal output is a maximum of 8.3 dB around zero detuning and has positive gain in the range of +or-6 GHz. This demonstrates highly efficient nonlinear interaction due to both large optical gain and large third-order susceptibility. The NDFWM efficiency is also investigated in connection with the TWA gain saturation characteristics and is found to be a maximum for operation around the saturation intensity of the TWA. >

[1]  I. Henning,et al.  A comparison of active and passive optical bistability in semiconductors , 1985, IEEE Journal of Quantum Electronics.

[2]  Kyo Inoue,et al.  Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier , 1987 .

[3]  J. Fujimoto,et al.  Spatial and frequency dependence of four-wave mixing in broad-area diode lasers , 1988 .

[4]  R. Ito,et al.  Longitudinal Mode Competition and Asymmetric Gain Saturation in Semiconductor Injection Lasers. I. Experiment , 1988 .

[5]  F. Favre,et al.  Four-wave mixing in traveling-wave semiconductor laser amplifiers , 1990 .

[6]  Y. Silberberg,et al.  Optical instabilities in a nonlinear Kerr medium , 1984 .

[7]  Govind P. Agrawal,et al.  Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers , 1988 .

[8]  Nonlinear mixing and phase conjugation in broad‐area diode lasers , 1988 .

[9]  Mukai,et al.  New route to optical chaos: Successive-subharmonic-oscil- lation cascade in a semiconductor laser coupled to an external cavity. , 1985, Physical review letters.

[10]  M. Osiński,et al.  Linewidth broadening factor in semiconductor lasers--An overview , 1987 .

[11]  M. Dagenais,et al.  Femtojoule optical switching in nonlinear semiconductor laser amplifiers , 1986 .

[12]  R. Nietzke,et al.  Cascade four‐wave mixing in semiconductor lasers , 1987 .

[13]  P. Doussiere,et al.  Four-wave mixing in travelling-wave semiconductor laser amplifier , 1989 .

[14]  K. Inoue Optical frequency exchange utilising, LD amplifiers and Mach-Zehnder filters , 1989 .

[15]  K. Inoue Observation of crosstalk due to four-wave mixing in a laser amplifier for FDM transmission , 1987 .

[16]  Takaaki Mukai,et al.  Theoretical analysis and fabrication of antireflection coatings on laser-diode facets , 1985 .

[17]  R. Frey On-axis intracavity nearly degenerate four-wave mixing in lasers. , 1986, Optics letters.

[18]  Yoshihisa Yamamoto,et al.  S/N and Error Rate Performance in AlGaAs Semiconductor Laser Preamplifier and Linear Repeater Systems , 1982 .

[19]  Govind P. Agrawal Amplifier-induced crosstalk in multichannel coherent lightwave systems , 1987 .

[20]  N. A. Olsson,et al.  400 Mbit/s, 372 km coherent transmission experiment using in-line optical amplifiers , 1988 .

[21]  H. Ishikawa,et al.  Mechanism of asymmetric longitudinal mode competition in InGaAsP/InP lasers , 1982 .

[22]  Hitoshi Kawaguchi,et al.  Bistable operation of semiconductor lasers by optical injection , 1981 .

[23]  Takaaki Mukai,et al.  1.5 μm ingaasp fabry‐perot cavity‐type laser amplifiers , 1987 .

[24]  Kyo Inoue,et al.  Homogeneous gain saturation in 1.5 μm InGaAsP traveling-wave semiconductor laser amplifiers , 1987 .

[25]  T. Saitoh,et al.  1.5 µm GaInAsP traveling-wave semiconductor laser amplifier , 1987 .

[26]  T. Saitoh,et al.  Signal gain saturation in two-channel common amplification using a 1.5μm InGaAsP travelling-wave laser amplifier , 1987 .

[27]  T. G. Hodgkinson,et al.  Application of communications theory to analyse carrier density modulation effects in travelling-wave semiconductor laser amplifiers , 1988 .

[28]  Nakajima,et al.  Observation of bistable reflectivity of phase conjugated signal through intracavity nearly degenerate four-wave mixing. , 1985, Physical review letters.

[29]  W. Elsasser,et al.  Four-wave mixing in GaAs/AlGaAs semiconductor lasers , 1989 .

[30]  Tetsuya Nakai,et al.  Optical Bistability in a Semiconductor Laser Amplifier , 1983 .

[31]  R. Olshansky,et al.  Effect of nonlinear gain on the bandwidth of semiconductor lasers , 1985 .

[32]  R. W. Tkach,et al.  Intermodulation distortion in optical amplifiers from carrier-density modulation , 1987 .

[33]  R. Frey,et al.  Collinear nearly degenerate four-wave mixing in intracavity amplifying media , 1986 .

[34]  Experimental confirmation of laser amplifier intermodulation model , 1989 .

[35]  Takaaki Mukai,et al.  Gain, frequency bandwidth, and saturation output power of AlGaAs DH laser amplifiers , 1981 .

[36]  G P Agrawal,et al.  Four-wave mixing and phase conjugation in semiconductor laser media. , 1987, Optics letters.

[37]  A. Bogatov,et al.  Anomalous interaction of spectral modes in a semiconductor laser , 1975 .

[38]  R. E. Tench,et al.  Measurement of carrier-density mediated intermodulation distortion in an optical amplifier , 1987 .

[39]  Robert Frey,et al.  Intracavity nearly degenerate four‐wave mixing in a (GaAl)As semiconductor laser , 1985 .

[40]  Kenju Otsuka,et al.  Optical bistability and nonlinear resonance in a resonant-type semiconductor laser amplifier , 1983 .

[41]  Ryuji Morita,et al.  Linewidth Enhancement Factor in GaAs/AlGaAs Multi-Quantum-Well Lasers , 1985 .

[42]  A. Suzuki,et al.  Turn-off characteristics of bistable laser diode , 1986 .

[43]  G. Grosskopf,et al.  140 Mbit/s DPSK transmission using an all-optical frequency convertor with a 4000 GHz conversion range , 1988 .