Monomial Resolutions

Call a monomial ideal M "generic" if no variable appears with the same nonzero exponent in two distinct monomial generators. Using a convex polytope first studied by Scarf, we obtain a minimal free resolution of M. Any monomial ideal M can be made generic by deformation of its generating exponents. Thus, the above construction yields a (usually nonminimal) resolution of M for arbitrary monomial ideals, bounding the Betti numbers of M in terms of the Upper Bound Theorem for Convex Polytopes. We show that our resolutions are DG-algebras, and consider realizability questions and irreducible decompositions.

[1]  Anna Maria Bigatti Upper Bounds for the Betti Numbers of a given Hilbert Function , 1992 .

[2]  Michel Kervaire,et al.  Minimal resolutions of some monomial ideals , 1990 .

[3]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[4]  A. Kustin The Minimal Resolution of a Codimension Four Almost Complete Intersection Is a DG-Algebra , 1994 .

[5]  J. Spencer Minimal scrambling sets of simple orders , 1972 .

[6]  Michael Eugene Stillman,et al.  Computation of Hilbert Functions , 1992, J. Symb. Comput..

[7]  Heather Hulett,et al.  Maximum betti numbers of homogeneous ideals with a given hilbert function , 1993 .

[8]  Gunter M. Ziegler,et al.  Realization spaces of 4-polytopes are universal , 1995 .

[10]  L. L. Avramov,et al.  OBSTRUCTIONS TO THE EXISTENCE OF MULTIPLICATIVE STRUCTURES ON MINIMAL FREE RESOLUTIONS , 1981 .

[11]  William T. Trotter,et al.  The Order Dimension of Convex Polytopes , 1993, SIAM J. Discret. Math..

[12]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[13]  P. Gritzmann,et al.  Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .

[14]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[15]  R. Stanley Combinatorics and commutative algebra , 1983 .

[16]  G. Ziegler Lectures on Polytopes , 1994 .

[17]  Francesco Mallegni,et al.  The Computation of Economic Equilibria , 1973 .

[18]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[19]  W. Schnyder Planar graphs and poset dimension , 1989 .

[20]  Gennady Lyubeznik,et al.  A new explicit finite free resolution of ideals generated by monomials in an R-sequence , 1988 .

[21]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS. I , 1996 .