Porous Silicon Particles for Cancer Therapy and Bioimaging

Porous silicon (pSi) engineered by electrochemical etching of silicon has been explored as a drug delivery carrier with the aim of overcoming the limitations of traditional therapies and medical treatments. pSi is biodegradable, non-cytotoxic and has optoelectronic properties that make this platform material a unique candidate for developing biomaterials for drug delivery and theranostics therapies. pSi provides new opportunities to improve existing therapies in different areas, paving the way for developing advanced theranostic nanomedicines, incorporating payloads of therapeutics with imaging capabilities. However, despite these outstanding advances, more extensive in-vivo studies are needed to assess the feasibility and reliability of this technology for real clinical practice. In this Chapter, we present an updated overview about the recent therapeutic systems based on pSi, with a critical analysis on the problems and opportunities that this technology faces as well as highlighting the growing potential of pSi technolgy.

[1]  Michael J. Sailor,et al.  Chemical Stability of Porous Silicon Surfaces Electrochemically Modified with Functional Alkyl Species , 2003 .

[2]  Rabah Boukherroub,et al.  Microwave-Assisted Chemical Functionalization of Hydrogen-Terminated Porous Silicon Surfaces , 2003 .

[3]  A. Jalanko,et al.  Native and Complexed IGF-1: Biodistribution and Pharmacokinetics in Infantile Neuronal Ceroid Lipofuscinosis , 2012, Journal of drug delivery.

[4]  N. Voelcker,et al.  Antibody‐Functionalized Porous Silicon Nanoparticles for Vectorization of Hydrophobic Drugs , 2013, Advanced healthcare materials.

[5]  N. Voelcker,et al.  Porous silicon-based nanostructured microparticles as degradable supports for solid-phase synthesis and release of oligonucleotides , 2012, Nanoscale Research Letters.

[6]  Reinald Hillebrand,et al.  Silicon-based photonic crystal slabs: two concepts , 2002 .

[7]  J. Kinsella,et al.  Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics. , 2011, Chemical communications.

[8]  T. Abribat,et al.  The rise and rise of drug delivery , 2005, Nature Reviews Drug Discovery.

[9]  N. Voelcker,et al.  New biodegradable materials produced by ring opening polymerisation of poly(L-lactide) on porous silicon substrates. , 2009, Journal of colloid and interface science.

[10]  Functionality of porous silicon particles: Surface modification for biomedical applications , 2010 .

[11]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[12]  Claude Lévy-Clément,et al.  Metal-assisted chemical etching of silicon in HF–H2O2 , 2008 .

[13]  Yi Cui,et al.  Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes , 2013, Scientific Reports.

[14]  Michael J. Sailor,et al.  A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface , 1999 .

[15]  K. Gaus,et al.  Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using "click" chemistry. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[16]  W. Freeman,et al.  Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug-delivery vehicle , 2008, British Journal of Ophthalmology.

[17]  Donghai Wang,et al.  Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries , 2013 .

[18]  Kurt Busch,et al.  Silicon‐Based Photonic Crystals , 2001 .

[19]  G. Parish,et al.  Development of an Alkaline-Compatible Porous-Silicon Photolithographic Process , 2011, Journal of Microelectromechanical Systems.

[20]  R. Serda,et al.  Characterization of Free and Porous Silicon-Encapsulated Superparamagnetic Iron Oxide Nanoparticles as Platforms for the Development of Theranostic Vaccines , 2014, Medical sciences.

[21]  R. Nuzzo,et al.  Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. , 2001, Journal of the American Chemical Society.

[22]  W. Freeman,et al.  Hydrosilylated porous silicon particles function as an intravitreal drug delivery system for daunorubicin. , 2013, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[23]  Mauro Ferrari,et al.  Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles , 2011, Molecular imaging.

[24]  Yunjie Yan,et al.  Dendrite‐Assisted Growth of Silicon Nanowires in Electroless Metal Deposition , 2003 .

[25]  Helmut Föll,et al.  Processing of Three‐Dimensional Microstructures Using Macroporous n‐Type Silicon , 1996 .

[26]  Kui‐Qing Peng,et al.  Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching , 2008 .

[27]  Jungkeun Lee,et al.  Porous silicon nanoparticles for cancer photothermotherapy , 2011, Nanoscale research letters.

[28]  H. Santos,et al.  Amine modification of thermally carbonized porous silicon with silane coupling chemistry. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[29]  G. Parish,et al.  Low temperature N2-based passivation technique for porous silicon thin films , 2009 .

[30]  J. Coffer Porous silicon and related composites as functional tissue engineering scaffolds , 2021, Porous Silicon for Biomedical Applications.

[31]  L. Canham Nanoscale semiconducting silicon as a nutritional food additive , 2007 .

[32]  G. Siuzdak,et al.  Combined immunocapture and laser desorption/ionization mass spectrometry on porous silicon. , 2010, Analytical chemistry.

[33]  Sonke Svenson,et al.  Theranostics: are we there yet? , 2013, Molecular pharmaceutics.

[34]  Michael J Sailor,et al.  The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[35]  Robert Langer,et al.  Moving smaller in drug discovery and delivery , 2002, Nature Reviews Drug Discovery.

[36]  Matthew R. Linford,et al.  Alkyl monolayers covalently bonded to silicon surfaces , 1993 .

[37]  David J. Wallis,et al.  Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions , 2003 .

[38]  Nicolas H Voelcker,et al.  The biocompatibility of porous silicon in tissues of the eye. , 2009, Biomaterials.

[39]  H. Santos,et al.  Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside , 2013 .

[40]  Martin J. Sweetman,et al.  Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[41]  Patrick V. Almeida,et al.  Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. , 2014, Nanoscale.

[42]  Steven J. P. McInnes,et al.  Biomedical Uses of Porous Silicon , 2015 .

[43]  Christoph Alexiou,et al.  Targeting cancer cells: magnetic nanoparticles as drug carriers , 2006, European Biophysics Journal.

[44]  E. Ruoslahti,et al.  Gated Luminescence Imaging of Silicon Nanoparticles. , 2015, ACS nano.

[45]  Michael J. Sailor,et al.  Using a porous silicon photonic crystal for bacterial cell‐based biosensing , 2007 .

[46]  W. Freeman,et al.  Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. , 2011, Biomaterials.

[47]  P. E. Laibinis,et al.  Derivatization of Porous Silicon by Grignard Reagents at Room Temperature , 1998 .

[48]  Kinam Park Controlled drug delivery systems: past forward and future back. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[49]  Zhipeng Huang,et al.  Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon , 2010 .

[50]  J. Salonen,et al.  Thermal carbonization of porous silicon surface by acetylene , 2002 .

[51]  H. Santos,et al.  In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. , 2010, Acta biomaterialia.

[52]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[53]  Warren C W Chan,et al.  Nanoparticle-mediated cellular response is size-dependent. , 2008, Nature nanotechnology.

[54]  Michael J Sailor,et al.  Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. , 2005, Journal of the American Chemical Society.

[55]  Volker Lehmann,et al.  Electrochemistry of Silicon , 2002 .

[56]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[57]  Nadine Geyer,et al.  Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. , 2009, Nano letters.

[58]  Lauren R. Clements,et al.  Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting , 2011 .

[59]  Kristopher A Kilian,et al.  Introducing distinctly different chemical functionalities onto the internal and external surfaces of mesoporous materials. , 2008, Angewandte Chemie.

[60]  M. Ferrari,et al.  Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice , 2012, Advanced functional materials.

[61]  Henry I. Smith,et al.  Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. , 2008, Nano letters.

[62]  E. Segal,et al.  DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers , 2012, Nanoscale Research Letters.

[63]  Nastassja A. Lewinski,et al.  A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. , 2011, Small.

[64]  Kurt Busch,et al.  Diffraction properties of two-dimensional photonic crystals , 2003 .

[65]  L. Canham,et al.  Derivatized Mesoporous Silicon with Dramatically Improved Stability in Simulated Human Blood Plasma , 1999 .

[66]  L. Canham Bioactive silicon structure fabrication through nanoetching techniques , 1995 .

[67]  Mauro Ferrari,et al.  Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[68]  Vesa-Pekka Lehto,et al.  Fabrication and chemical surface modification of mesoporous silicon for biomedical applications , 2008 .

[69]  Mauro Ferrari,et al.  Cooperative, Nanoparticle‐Enabled Thermal Therapy of Breast Cancer , 2012, Advanced healthcare materials.

[70]  M. Ward,et al.  Bioactive polycrystalline silicon , 1996 .

[71]  Staci R Kane,et al.  New method for attachment of biomolecules to porous silicon. , 2003, Chemical communications.

[72]  J. Salonen,et al.  Stabilization of porous silicon surface by thermal decomposition of acetylene , 2004 .

[73]  Mauro Ferrari,et al.  Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. , 2008, Nature nanotechnology.

[74]  D. J. Lee,et al.  Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles , 2015, Scientific Reports.

[75]  N. Voelcker,et al.  Polymerization-Amplified Optical DNA Detection on Porous Silicon Templates. , 2012, ACS macro letters.

[76]  M. Maynadier,et al.  Two‐Photon Excitation of Porphyrin‐Functionalized Porous Silicon Nanoparticles for Photodynamic Therapy , 2014, Advanced materials.

[77]  L. Bjursten,et al.  Tissue Reactions to Porous Silicon: A Comparative Biomaterial Study , 2000 .

[78]  W. Freeman,et al.  Porous silicon in drug delivery devices and materials. , 2008, Advanced drug delivery reviews.

[79]  H. Santos,et al.  In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. , 2014, Molecular pharmaceutics.

[80]  H. Asoh,et al.  Nanopatterning of silicon with use of self-organized porous alumina and colloidal crystals as mask , 2007 .

[81]  Katharina Gaus,et al.  Forming Antifouling Organic Multilayers on Porous Silicon Rugate Filters Towards In Vivo/Ex Vivo Biophotonic Devices , 2007 .

[82]  N. Voelcker,et al.  Generation of reactive oxygen species from porous silicon microparticles in cell culture medium. , 2009, Journal of biomedical materials research. Part A.

[83]  N. Voelcker,et al.  Combination of iCVD and porous silicon for the development of a controlled drug delivery system. , 2012, ACS applied materials & interfaces.

[84]  W. Freeman,et al.  Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin. , 2014, Acta biomaterialia.

[85]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.

[86]  Bruno Sarmento,et al.  A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors , 2015, Nano Research.

[87]  Gregory M. Lanza,et al.  Theranostic agents: From micro to nano in seconds. , 2015, Nature nanotechnology.

[88]  Jarno Salonen,et al.  Inhibition of Multidrug Resistance of Cancer Cells by Co‐Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes , 2015 .

[89]  H. Santos,et al.  Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. , 2011, Biomaterials.

[90]  Ming Ma,et al.  Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. , 2012, Biomaterials.

[91]  J. Aimone,et al.  Routes to calcified porous silicon: implications for drug delivery and biosensing , 2003 .

[92]  S. C. Bayliss,et al.  The Culture of Mammalian Cells on Nanostructured Silicon , 1999 .

[93]  Martin J. Sweetman,et al.  Rapid, metal-free hydrosilanisation chemistry for porous silicon surface modification. , 2015, Chemical communications.

[94]  J. Salonen,et al.  Studies of Thermally‐Carbonized Porous Silicon Surfaces , 2000 .

[95]  Jennifer S. Park,et al.  Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. , 2008, ACS nano.

[96]  E. Fabrizio,et al.  Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent , 2006 .

[97]  Jinho Park,et al.  Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy , 2012, Theranostics.

[98]  A. Loni,et al.  Mesoporous silicon: a platform for the delivery of therapeutics , 2007, Expert opinion on drug delivery.

[99]  H Abrahamse,et al.  Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. , 2009, Journal of photochemistry and photobiology. B, Biology.

[100]  Nadine Geyer,et al.  Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching , 2010, Nanotechnology.

[101]  J. Kelly,et al.  Silicon Etching in HNO3/HF Solution: Charge Balance for the Oxidation Reaction , 1999 .

[102]  Samir Mitragotri,et al.  Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies , 2014, Nature Reviews Drug Discovery.

[103]  Martin J. Sweetman,et al.  Porous Silicon Films Micropatterned with Bioelements as Supports for Mammalian Cells , 2012 .

[104]  Computation of optical properties of Si‐based photonic crystals with varying pore diameters , 2003 .

[105]  Allan S. Hoffman,et al.  The origins and evolution of "controlled" drug delivery systems. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[106]  H. Santos,et al.  Cellular interactions of surface modified nanoporous silicon particles. , 2012, Nanoscale.

[107]  Philip H Jones,et al.  Optical trapping of porous silicon nanoparticles , 2011, Nanotechnology.

[108]  Stephen B. Howell,et al.  In Vivo Time-gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles , 2013, Nature Communications.

[109]  Nicolas H Voelcker,et al.  Evaluation of mammalian cell adhesion on surface-modified porous silicon. , 2006, Biomaterials.

[110]  Mauro Ferrari,et al.  Tailored porous silicon microparticles: fabrication and properties. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[111]  T. Hadjersi,et al.  Metal-assisted chemical etching in HF/Na2S2O8 or HF/KMnO4 produces porous silicon , 2004 .

[112]  Jungkeun Lee,et al.  In-vivo cancer cell destruction using porous silicon nanoparticles , 2011, Anti-cancer drugs.

[113]  N. Voelcker,et al.  Biocompatibility and Bioactivity of Porous Silicon , 2015 .

[114]  C. Pickering,et al.  Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon , 1984 .

[115]  Martin A. Cole,et al.  Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[116]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[117]  L. Strambini,et al.  Electrochemical Preparation of In-Silicon Hierarchical Networks of Regular Out-Of-Plane Macropores Interconnected by Secondary In-Plane Pores Through Controlled Inhibition of Breakdown Effects , 2016 .

[118]  H. Santos,et al.  ¹⁸F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. , 2011, Molecular pharmaceutics.

[119]  Patrick V. Almeida,et al.  The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. , 2013, Biomaterials.

[120]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[121]  Michael J. Sailor,et al.  Surface chemistry of Luminescent Silicon Nanocrystallites , 1997 .

[122]  H. Santos Porous Silicon for Biomedical Applications , 2014 .

[123]  Mauro Ferrari,et al.  Cellular association and assembly of a multistage delivery system. , 2010, Small.

[124]  M. Ferrari,et al.  Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems. , 2015, Current drug targets.

[125]  Michael J Sailor,et al.  A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries , 2016, Nature Communications.

[126]  Katrin Schwarz,et al.  Nanoparticles target distinct dendritic cell populations according to their size , 2008, European journal of immunology.

[127]  L. Canham,et al.  Complete Tumor Response Following Intratumoral 32P BioSilicon on Human Hepatocellular and Pancreatic Carcinoma Xenografts in Nude Mice , 2005, Clinical Cancer Research.

[128]  Michael J Sailor,et al.  Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. , 2003, Chemical communications.

[129]  M. Ferrari,et al.  Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. , 2014, Cancer letters.

[130]  Leigh T. Canham,et al.  Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces , 1999 .

[131]  Peng Huang,et al.  Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? , 2009, Nature Reviews Drug Discovery.

[132]  Vesa-Pekka Lehto,et al.  Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. , 2010, ACS nano.

[133]  M. Sendova-Vassileva,et al.  Preparation of thin porous silicon layers by stain etching , 1997 .

[134]  S. Krishnan,et al.  Nanoparticle-mediated hyperthermia in cancer therapy. , 2011, Therapeutic delivery.

[135]  Lisa M. Bonanno,et al.  Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. , 2011, Nanomedicine.

[136]  Martin J. Sweetman,et al.  Chemically patterned porous silicon photonic crystals towards internally referenced organic vapour sensors , 2012 .

[137]  H. Santos,et al.  Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. , 2011, Biomaterials.

[138]  Philippe M. Fauchet,et al.  Nano‐ to Microscale Porous Silicon as a Cell Interface for Bone‐Tissue Engineering , 2007 .

[139]  W. Freeman,et al.  Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles. , 2013, Experimental eye research.

[140]  Heidi Ledford Bankruptcy filing worries developers of nanoparticle cancer drugs , 2016, Nature.

[141]  Michio Matsumura,et al.  Helical Nanoholes Bored in Silicon by Wet Chemical Etching Using Platinum Nanoparticles as Catalyst , 2005 .

[142]  H. Santos,et al.  Mesoporous materials as controlled drug delivery formulations , 2011 .

[143]  Robin H. A. Ras,et al.  Facile synthesis of biocompatible superparamagnetic mesoporous nanoparticles for imageable drug delivery , 2014 .

[144]  A. Mohamed,et al.  Morphological and structural studies of titanate and titania nanostructured materials obtained after heat treatments of hydrothermally produced layered titanate , 2012 .

[145]  M. Sailor,et al.  Selective functionalization of the internal and the external surfaces of mesoporous silicon by liquid masking. , 2013, ACS nano.

[146]  M. Ferrari,et al.  Multistage Mesoporous Silicon-based Nanocarriers: Biocompatibility with Immune Cells and Controlled Degradation in Physiological Fluids. , 2008, Controlled release newsletter.

[147]  H. Asoh,et al.  Metal patterning on silicon surface by site-selective electroless deposition through colloidal crystal templating. , 2007, Journal of colloid and interface science.

[148]  J. E. Bateman,et al.  Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes. , 1998, Angewandte Chemie.

[149]  Steven J P McInnes,et al.  Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives , 2017, Expert opinion on drug delivery.

[150]  J. Buriak,et al.  Photopatterned Hydrosilylation on Porous Silicon. , 1998, Angewandte Chemie.

[151]  Lisa M. Bonanno,et al.  Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques. , 2010, Analytical chemistry.

[152]  Y. Jung,et al.  Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage , 2012, Advanced materials.

[153]  M. Ferrari,et al.  Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. , 2013, Cancer letters.

[154]  J. Gooding,et al.  Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization. , 2010, Chemical Society reviews.

[155]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[156]  Steven J P McInnes,et al.  Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[157]  Robert Langer,et al.  Application of Micro- and Nano-Electromechanical Devices to Drug Delivery , 2006, Pharmaceutical Research.

[158]  M. Mayo,et al.  Targeting strategies for cancer radiotherapy. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[159]  Michael J. Sailor,et al.  Chemical Modification of Crystalline Porous Silicon Surfaces , 1999 .

[160]  K. Tsujino,et al.  Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst , 2005 .

[161]  Anne L. van de Ven,et al.  Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. , 2013, Nature nanotechnology.

[162]  A. Loni,et al.  In-Vivo Assessment of Tissue Compatibility and Calcification of Bulk and Porous Silicon , 1998 .

[163]  Michael J Sailor,et al.  Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. , 2011, ACS nano.

[164]  Albert Birner,et al.  Structuring of Macroporous Silicon for Applications as Photonic Crystals , 2000 .

[165]  N. Voelcker,et al.  Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice , 2017, Advanced healthcare materials.

[166]  J. García-Ruíz,et al.  Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications. , 2011, Journal of biomedical optics.

[167]  D. R. Turner On the Mechanism of Chemically Etching Germanium and Silicon , 1960 .

[168]  D. Peer Featuring the special issue guest editor: Dan Peer, Ph.D. , 2014, Cancer letters.

[169]  M. Sailor Porous Silicon in Practice: Preparation, Characterization and Applications , 2012 .

[170]  A. Birner,et al.  A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon , 2001 .

[171]  W. Freeman,et al.  A Novel Approach of Daunorubicin Application on Formation of Proliferative Retinopathy Using a Porous Silicon Controlled Delivery System: Pharmacodynamics. , 2015, Investigative ophthalmology & visual science.

[172]  P. Chow,et al.  A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device--a first-in-man study. , 2007, International journal of radiation oncology, biology, physics.

[173]  Mauro Ferrari,et al.  Porous silicon advances in drug delivery and immunotherapy. , 2013, Current opinion in pharmacology.

[174]  Xiuling Li,et al.  Metal-assisted chemical etching in HF/H2O2 produces porous silicon , 2000 .

[175]  Mauro Ferrari,et al.  Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. , 2010, Journal of biomedical materials research. Part A.

[176]  C. Prestidge,et al.  Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. , 2012, Advances in colloid and interface science.

[177]  Andreas Janshoff,et al.  Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing , 1998 .

[178]  W. Freeman,et al.  Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. , 2013, Investigative ophthalmology & visual science.

[179]  Thomas Laurell,et al.  Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities , 1997 .

[180]  J. Gooding,et al.  Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[181]  Jörg Müller,et al.  Fabrication and Optimization of Porous Silicon Substrates for Diffusion Membrane Applications , 2005 .

[182]  H. Santos,et al.  The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. , 2012, Biomaterials.

[183]  Hélder A Santos,et al.  Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. , 2013, Biomaterials.

[184]  Robert Langer,et al.  The biocompatibility of mesoporous silicates. , 2008, Biomaterials.

[185]  DBR PSi/PMMA composite materials for smart patch application , 2008 .

[186]  H. Santos,et al.  Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. , 2012, Molecular pharmaceutics.

[187]  M. Cima,et al.  A controlled-release microchip , 1999, Nature.

[188]  Hélder A Santos,et al.  Multifunctional porous silicon nanoparticles for cancer theranostics. , 2015, Biomaterials.

[189]  W. Freeman,et al.  Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[190]  R. Martínez‐Máñez,et al.  Antibody-Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromo-Fluorogenic Detection of Finasteride , 2012, ChemistryOpen.

[191]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[192]  C. Domingo,et al.  Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon , 2012, Nanoscale Research Letters.

[193]  Mauro Ferrari,et al.  Mitotic trafficking of silicon microparticles. , 2009, Nanoscale.

[194]  K. Gaus,et al.  Antibody modified porous silicon microparticles for the selective capture of cells. , 2014, Bioconjugate chemistry.

[195]  Theresa M Reineke,et al.  Theranostics: combining imaging and therapy. , 2011, Bioconjugate chemistry.

[196]  D. Losic,et al.  Luminescent Silicon Diatom Replicas: Self‐Reporting and Degradable Drug Carriers with Biologically Derived Shape for Sustained Delivery of Therapeutics , 2015 .

[197]  Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. , 2011, Small.

[198]  L. Canham,et al.  Porosified Silicon Wafer Structures Impregnated With Platinum Anti-Tumor Compounds: Fabrication, Characterization, and Diffusion Studies , 2000 .

[199]  Farid A. Harraz,et al.  Porous silicon chemical sensors and biosensors: A review , 2014 .

[200]  N. Voelcker,et al.  Oral Mucosal Epithelial Cells Grown on Porous Silicon Membrane for Transfer to the Rat Eye , 2017, Scientific Reports.

[201]  Volker Schmidt,et al.  Diameter-dependent growth direction of epitaxial silicon nanowires. , 2005, Nano letters.

[202]  R Langer,et al.  Microchips as Controlled Drug-Delivery Devices. , 2000, Angewandte Chemie.

[203]  A. Närvänen,et al.  Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes , 2012 .

[204]  John G. Reynolds,et al.  Enzyme Immobilization on Porous Silicon Surfaces , 2004 .

[205]  A. Uhlir Electrolytic shaping of germanium and silicon , 1956 .

[206]  P. Coxon,et al.  Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: synthesis and their use in biomedical imaging. , 2012, ACS applied materials & interfaces.

[207]  Nathan H. Williamson,et al.  Novel Gd-Loaded Silicon Nanohybrid: A Potential Epidermal Growth Factor Receptor Expressing Cancer Cell Targeting Magnetic Resonance Imaging Contrast Agent. , 2017, ACS applied materials & interfaces.

[208]  H. Santos,et al.  Nanostructured porous silicon materials: potential candidates for improving drug delivery. , 2012, Nanomedicine.

[209]  L. K. Fifield,et al.  Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. , 1998, Journal of inorganic biochemistry.

[210]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[211]  J. Buriak,et al.  Chemical and Biological Applications of Porous Silicon Technology , 2000 .

[212]  Mauro Ferrari,et al.  Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast , 2010, Nature nanotechnology.

[213]  J. Salonen,et al.  Mesoporous silicon in drug delivery applications. , 2008, Journal of pharmaceutical sciences.

[214]  B. R. Coad,et al.  "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System. , 2016, ACS applied materials & interfaces.

[215]  James W Tunnell,et al.  In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy , 2012, International journal of nanomedicine.

[216]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[217]  S. C. Bayliss,et al.  Biologically Interfaced Porous Silicon Devices , 2000 .

[218]  Kui‐Qing Peng,et al.  Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching , 2008 .

[219]  H. Santos,et al.  Biocompatibility of porous silicon for biomedical applications , 2014 .

[220]  E. Ruoslahti,et al.  Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. , 2010, Small.

[221]  M. Ferrari,et al.  In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. , 2010, International journal of pharmaceutics.

[222]  M. Ferrari,et al.  Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. , 2013, Cancer letters.

[223]  K. Järvinen,et al.  Development of porous silicon nanocarriers for parenteral peptide delivery. , 2013, Molecular pharmaceutics.

[224]  Michael J Sailor,et al.  Smart dust: Self-assembling, self-orienting photonic crystals of porous Si , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[225]  Wan In Lee,et al.  Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation , 2008 .