Adopting IEEE 802.11 MAC for industrial delay-sensitive wireless control and monitoring applications: A survey

Abstract In recent years, wireless communication has been widely adopted in the field of industrial systems. Compared with traditional wired control and monitoring systems, wireless control and monitoring systems are cost-effective and easy to deploy. On the other hand, IEEE 802.11-based wireless technology is widely applied in many areas due to its popularity, flexibility and ease of management, which makes it a good candidate for various industrial wireless control and monitoring applications with different requirements. However, real-time wireless control and monitoring applications usually have varying degrees of timeliness requirements, and the basic IEEE 802.11 MAC mechanism cannot support such requirements due to its inherent drawbacks. Therefore, in this paper we intend to produce a comprehensive survey and classification of the recent deterministic enhancement approaches in IEEE 802.11 networks, which can be applied in wireless control and monitoring systems with different real-time requirements. We explain each mechanism briefly, and give an extensive comparison of the features (especially the timeliness level) of all described MAC mechanisms. Finally, we conclude this paper by identifying some open research issues for future consideration.

[1]  Giuliana Alderisi,et al.  SchedWiFi: An innovative approach to support scheduled traffic in ad-hoc industrial IEEE 802.11 networks , 2015, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).

[2]  Byung-Seo Kim,et al.  Modified GroupCast retries block acknowledgement scheme in IEEE 802.11aa standard-based for multimedia applications , 2014, 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS).

[3]  Giuseppe Lipari,et al.  Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11e networks , 2012, Ad Hoc Networks.

[4]  Gianluca Cena,et al.  Seamless Link-Level Redundancy to Improve Reliability of Industrial Wi-Fi Networks , 2016, IEEE Transactions on Industrial Informatics.

[5]  Li Zheng Industrial wireless sensor networks and standardizations: The trend of wireless sensor networks for process autometion , 2010, Proceedings of SICE Annual Conference 2010.

[6]  Jahanzeb Farooq,et al.  A Novel MAC scheme for solving the QoS parameter adjustment problem in IEEE 802.11e EDCA , 2008, 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks.

[7]  Rajeev Tripathi,et al.  A robust hybrid-MAC protocol for M2M communications , 2014, 2014 International Conference on Computer and Communication Technology (ICCCT).

[8]  Markus Rentschler,et al.  Performance analysis of parallel redundant WLAN , 2012, Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012).

[9]  Ali Hazmi,et al.  Performance evaluation of IEEE 802.11ah and its restricted access window mechanism , 2014, 2014 IEEE International Conference on Communications Workshops (ICC).

[10]  Song Han,et al.  Time delay compensation in a wireless tracking control system with previewed reference , 2014, 2014 American Control Conference.

[11]  Jean C. Walrand,et al.  Design and Analysis of an Asynchronous Zero Collision MAC Protocol , 2008, ArXiv.

[12]  Kang G. Shin,et al.  Post-CCA and Reinforcement Learning Based Bandwidth Adaptation in 802.11ac Networks , 2018, IEEE Transactions on Mobile Computing.

[13]  Petar Popovski,et al.  Reliable and Efficient Access for Alarm-Initiated and Regular M2M Traffic in IEEE 802.11ah Systems , 2016, IEEE Internet of Things Journal.

[14]  Klaus Wehrle,et al.  A receiver-based 802.11 rate adaptation scheme with On-Demand Feedback , 2012, 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC).

[15]  J. Barcelo,et al.  Traffic Prioritization for Carrier Sense Multiple Access with Enhanced Collision Avoidance , 2009, 2009 IEEE International Conference on Communications Workshops.

[16]  Mehmet Fatih Tüysüz,et al.  A Beacon-Based Collision-Free Channel Access Scheme for IEEE 802.11 WLANs , 2014, Wirel. Pers. Commun..

[17]  Giuseppe Lipari,et al.  Providing variable TXOP for IEEE 802.11e HCCA real-time networks , 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC).

[18]  Saewoong Bahk,et al.  A Channel Allocation Algorithm for Reducing the Channel Sensing/Reserving Asymmetry in 802.11ac Networks , 2015, IEEE Transactions on Mobile Computing.

[19]  Shahrokh Valaee,et al.  Completion Delay Minimization for Instantly Decodable Network Codes , 2012, IEEE/ACM Transactions on Networking.

[20]  Mohamed Othman,et al.  Adaptive multi-polling scheduler for QoS support of video transmission in IEEE 802.11e WLANs , 2016, Telecommun. Syst..

[21]  Boris Bellalta,et al.  Future evolution of CSMA protocols for the IEEE 802.11 standard , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[22]  Fulvio Babich,et al.  Fast retry limit adaptation for video distortion/delay control in IEEE 802.11e distributed networks , 2016, Ad Hoc Networks.

[23]  Jaume Barceló,et al.  IEEE 802.11AH: the WiFi approach for M2M communications , 2014, IEEE Wireless Communications.

[24]  Sam Leffler,et al.  TDMA for Long Distance Wireless Networks , 2009 .

[25]  Gianluca Cena,et al.  Improving Effectiveness of Seamless Redundancy in Real Industrial Wi-Fi Networks , 2018, IEEE Transactions on Industrial Informatics.

[26]  Tsern-Huei Lee,et al.  On efficient multipolling with various service intervals for IEEE 802.11e WLANs , 2011, 2011 7th International Wireless Communications and Mobile Computing Conference.

[27]  Ingrid Moerman,et al.  Intelligent TDMA heuristic scheduling by taking into account physical layer interference for an industrial IoT environment , 2018, Telecommun. Syst..

[28]  Andrea Zanella,et al.  On the Use of IEEE 802.11n for Industrial Communications , 2016, IEEE Transactions on Industrial Informatics.

[29]  Jaume Barceló,et al.  On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs , 2012, IEEE Communications Letters.

[30]  Shuji Tasaka,et al.  A packet scheduling scheme for audio-video transmission over error-prone IEEE 802.11e HCCA wireless LANs , 2009, 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.

[31]  Srihari Nelakuditi,et al.  No time to countdown: migrating backoff to the frequency domain , 2011, MobiCom.

[32]  Jorden Lee,et al.  OFDMA-based Hybrid Channel Access for IEEE 802.11ax WLAN , 2018, 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC).

[33]  Gianluca Cena,et al.  Experimental characterization of redundant channels in industrial Wi-Fi networks , 2016, 2016 IEEE World Conference on Factory Communication Systems (WFCS).

[34]  Douglas C. Sicker,et al.  Transmission Schemes for Multicasting Hard Deadline Constrained Prioritized Data in Wireless Multimedia Streaming , 2016, IEEE Transactions on Wireless Communications.

[35]  Badii Jouaber,et al.  I-DCF: Improved DCF for Channel Access in IEEE 802.11 Wireless Networks , 2014, 2014 IEEE 79th Vehicular Technology Conference (VTC Spring).

[36]  Yu-Chu Tian,et al.  A Deadline-Constrained 802.11 MAC Protocol With QoS Differentiation for Soft Real-Time Control , 2016, IEEE Transactions on Industrial Informatics.

[37]  Prasant Mohapatra,et al.  Soft-TDMAC: A Software-Based 802.11 Overlay TDMA MAC with Microsecond Synchronization , 2012, IEEE Transactions on Mobile Computing.

[38]  Dariusz R. Kowalski,et al.  Performance Analysis and Algorithm Selection for Reliable Multicast in IEEE 802.11aa Wireless LAN , 2014, IEEE Transactions on Vehicular Technology.

[39]  Hubert D. Kirrmann,et al.  IEC 62439 PRP: Bumpless recovery for highly available, hard real-time industrial networks , 2007, 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007).

[40]  Ricardo Moraes,et al.  Comparing RT-WiFi and HCCA approaches to handle real-time traffic in open communication environments , 2012, Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012).

[41]  Subhas Mukhopadhyay,et al.  WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings , 2015, Sensors.

[42]  Yixin Chen,et al.  Real-Time Scheduling for WirelessHART Networks , 2010, 2010 31st IEEE Real-Time Systems Symposium.

[43]  Ricardo Moraes,et al.  A coordination layer to handle real-time communication in Wi-Fi networks with uncontrolled traffic sources , 2011, 2011 IEEE 36th Conference on Local Computer Networks.

[44]  Rongbo Zhu,et al.  Intelligent rate control for supporting real-time traffic in WLAN mesh networks , 2011, J. Netw. Comput. Appl..

[45]  Cristina Cano,et al.  Dynamic Parameter Adjustment in CSMA/ECA , 2010, MACOM.

[46]  Ning Wang,et al.  One-to-Multipoint Laser Remote Power Supply System for Wireless Sensor Networks , 2012, IEEE Sensors Journal.

[47]  Xin Zhang,et al.  LLE: A timer extension mechanism for alarm-triggered traffic in IEEE 802.11ah WLANs , 2017, 2017 IEEE International Conference on Communications (ICC).

[48]  Xiaojun Ma,et al.  Deterministic Backoff: Toward Efficient Polling for IEEE 802.11e HCCA in Wireless Home Networks , 2011, IEEE Transactions on Mobile Computing.

[49]  Jose Miguel Villalón Millán,et al.  An Adaptive Medium Access Parameter Prediction Scheme for IEEE 802.11 Real-Time Applications , 2017, Wirel. Commun. Mob. Comput..

[50]  Sudip Misra,et al.  Semi-Distributed Backoff: Collision-Aware Migration from Random to Deterministic Backoff , 2015, IEEE Transactions on Mobile Computing.

[51]  Gianluca Cena,et al.  Dynamic duplicate deferral techniques for redundant Wi-Fi networks , 2014, Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

[52]  Byung-Seo Kim,et al.  A Self-Scrutinized Backoff Mechanism for IEEE 802.11ax in 5G Unlicensed Networks , 2018 .

[53]  T. Weingart,et al.  MultiMAC - an adaptive MAC framework for dynamic radio networking , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[54]  Steven X. Ding,et al.  An Integrated Design Framework of Fault-Tolerant Wireless Networked Control Systems for Industrial Automatic Control Applications , 2013, IEEE Transactions on Industrial Informatics.

[55]  Nitin H. Vaidya,et al.  Token-DCF: An opportunistic MAC protocol for wireless networks , 2012, 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS).

[56]  Weibo Gong,et al.  A reservation based backoff method for video streaming in 802.11 home networks , 2010, IEEE Journal on Selected Areas in Communications.

[57]  Chih-Heng Ke,et al.  A smart exponential-threshold-linear backoff mechanism for IEEE 802.11 WLANs , 2011, Int. J. Commun. Syst..

[58]  Der-Jiunn Deng,et al.  IEEE 802.11ax: Highly Efficient WLANs for Intelligent Information Infrastructure , 2017, IEEE Communications Magazine.

[59]  Pravin Varaiya,et al.  WTRP - wireless token ring protocol , 2002, IEEE Transactions on Vehicular Technology.

[60]  Steven X. Ding,et al.  An ${\oldstyle{H_{\infty}}}$ Fault Estimation Scheme of Wireless Networked Control Systems for Industrial Real-Time Applications , 2014, IEEE Transactions on Control Systems Technology.

[61]  Gianluca Cena,et al.  On the Performance of IEEE 802.11e Wireless Infrastructures for Soft-Real-Time Industrial Applications , 2010, IEEE Transactions on Industrial Informatics.

[62]  Nurul I. Sarkar,et al.  E-MAC: An evolutionary solution for collision avoidance in wireless ad hoc networks , 2016, J. Netw. Comput. Appl..

[63]  Gianluca Cena,et al.  A fixed-priority access scheme for industrial Wi-Fi networks , 2016, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.

[64]  Behnam Badihi,et al.  Performance Evaluation of IEEE 802.11ah Actuators , 2016, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).

[65]  Yijing Zeng,et al.  Performance analysis of the 802.11aa intra-access category prioritization under saturated condition , 2014, 2014 IEEE Global Communications Conference.

[66]  Lili Qiu,et al.  ER: efficient retransmission scheme for wireless LANs , 2007, CoNEXT '07.

[67]  Byung-Seo Kim,et al.  Design of MAC Layer Resource Allocation Schemes for IEEE 802.11ax: Future Directions , 2018 .

[68]  Weibo Gong,et al.  Semi-Random Backoff: Towards Resource Reservation for Channel Access in Wireless LANs , 2009, IEEE/ACM Transactions on Networking.

[69]  N. Sugino,et al.  Adaptive Channel Access Mechanism for Real Time Traffic over IEEE 802.11e Wi-Fi Network , 2013, 2013 4th International Conference on Intelligent Systems, Modelling and Simulation.

[70]  Fenghua Zhu,et al.  Cyber-physical-social system in intelligent transportation , 2015, IEEE/CAA Journal of Automatica Sinica.

[71]  Muriel Medard,et al.  XORs in the air: practical wireless network coding , 2006, SIGCOMM 2006.

[72]  Boris Bellalta,et al.  CAS-based Channel Access Protocol for IEEE 802.11ah WLANs , 2014 .

[73]  Tho Le-Ngoc,et al.  Learning-based hybrid TDMA-CSMA MAC protocol for virtualized 802.11 WLANs , 2015, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[74]  Evgeny M. Khorov,et al.  A survey on IEEE 802.11ah: An enabling networking technology for smart cities , 2015, Comput. Commun..

[75]  Adlen Ksentini,et al.  On Sustained QoS Guarantees in Operated IEEE 802.11 Wireless LANs , 2008, IEEE Transactions on Parallel and Distributed Systems.

[76]  John S. Thompson,et al.  Centralized Random Backoff for Collision Resolution in Wi-Fi Networks , 2017, IEEE Transactions on Wireless Communications.

[77]  Midori Sugaya,et al.  KTAS: Analysis of Timer Latency for Embedded Linux Kernel , 2010 .

[78]  Byeong-hee Roh,et al.  Performance Improvement of QoS-Enabled WLANs Using Adaptive Contention Window Backoff Algorithm , 2018, IEEE Systems Journal.

[79]  Alyani Ismail,et al.  Efficient Back-off Mechanism for Multimedia Support in 802.11e EDCA Wireless Ad-Hoc Networks , 2013, Wirel. Pers. Commun..

[80]  Michele Luvisotto,et al.  A Dynamic Rate Selection Algorithm for IEEE 802.11 Industrial Wireless LAN , 2017, IEEE Transactions on Industrial Informatics.

[81]  David Malone,et al.  Decentralised learning MACs for collision-free access in WLANs , 2010, Wirel. Networks.

[82]  Yuan Xue,et al.  Dynamic Tuning Retransmission Limit of IEEE 802.11 MAC Protocol for Networked Control Systems , 2010, 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing.

[83]  G. Boggia,et al.  Feedback-Based Control for Providing Real-Time Services With the 802.11e MAC , 2007, IEEE/ACM Transactions on Networking.

[84]  Wen-Ping Lai,et al.  Virtual queue dropping for robust real-time video over IEEE 802.11aa wireless LANs , 2016, EURASIP J. Wirel. Commun. Netw..

[85]  Mei-Ling Shyu,et al.  An Optimized Scheduling Scheme to Provide Quality of Service in 802.11e Wireless LAN , 2009, 2009 11th IEEE International Symposium on Multimedia.

[86]  Thierry Turletti,et al.  Adaptive EDCF: enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[87]  Sunghyun Choi,et al.  Two-level protection and guarantee for multimedia traffic in IEEE 802.11e distributed WLANs , 2009, Wirel. Networks.

[88]  Christina Fragouli,et al.  Wireless Network Coding: Opportunities & Challenges , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[89]  Steven X. Ding,et al.  A Review on Basic Data-Driven Approaches for Industrial Process Monitoring , 2014, IEEE Transactions on Industrial Electronics.

[90]  Cristina Cano,et al.  Learning-BEB: Avoiding Collisions in WLAN , 2008 .

[91]  Lakshminarayanan Subramanian,et al.  WiLDNet: Design and Implementation of High Performance WiFi Based Long Distance Networks , 2007, NSDI.

[92]  Chris Blondia,et al.  TDMA on commercial of-the-shelf hardware : fact and fiction revealed , 2015 .

[93]  Sudip Misra,et al.  D2D: Delay-Aware Distributed Dynamic Adaptation of Contention Window in Wireless Networks , 2016, IEEE Transactions on Mobile Computing.

[94]  Song Han,et al.  WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control , 2008, 2008 IEEE Real-Time and Embedded Technology and Applications Symposium.

[95]  Lotfi Kamoun,et al.  Multi-user access mechanism with intra-access categories differentiation for IEEE 802.11ac wireless local area networks , 2017, Telecommun. Syst..

[96]  R. Moraes,et al.  A TDMA-based mechanism to enforce real-time behavior in WiFi networks , 2008, 2008 IEEE International Workshop on Factory Communication Systems.

[97]  Matteo Bertocco,et al.  On the Rate Adaptation Techniques of IEEE 802.11 Networks for Industrial Applications , 2013, IEEE Transactions on Industrial Informatics.

[98]  Jose Miguel Villalón Millán,et al.  Dynamic AIFSN tuning for improving the QoS over IEEE 802.11 WLANs , 2015, 2015 International Wireless Communications and Mobile Computing Conference (IWCMC).

[99]  Yan Song,et al.  Industrial wireless deterministic communication based on WLAN: Design, implementation and analysis , 2009, 2009 IEEE International Conference on Communications Technology and Applications.

[100]  Cristina Cano,et al.  Carrier sense multiple access with enhanced collision avoidance: a performance analysis , 2009, IWCMC.

[101]  Marek Natkaniec,et al.  IEEE 802.11aa intra-AC prioritization - A new method of increasing the granularity of traffic prioritization in WLANs , 2014, 2014 IEEE Symposium on Computers and Communications (ISCC).

[102]  Elena López-Aguilera,et al.  Dynamic sensitivity control algorithm leveraging adaptive RTS/CTS for IEEE 802.11ax , 2016, 2016 IEEE Wireless Communications and Networking Conference.

[103]  Sujata Banerjee,et al.  meSDN: mobile extension of SDN , 2014, MCS '14.

[104]  Dong Yang,et al.  Det-LB: A Load Balancing Approach in 802.11 Wireless Networks for Industrial Soft Real-Time Applications , 2018, IEEE Access.

[105]  Jose Miguel Villalón Millán,et al.  Evaluation of the IEEE 802.11aa group addressed service for robust audio-video streaming , 2012, 2012 IEEE International Conference on Communications (ICC).

[106]  Danijela Cabric,et al.  Traffic-aware backoff design for IEEE 802.11(ac) , 2016, 2016 International Conference on Computing, Networking and Communications (ICNC).

[107]  I. Jabri,et al.  A frame aggregation scheduler for QoS-sensitive applications in IEEE 802.11n WLANs , 2012, 2012 International Conference on Communications and Information Technology (ICCIT).

[108]  Jeroen Famaey,et al.  Real-Time Station Grouping under Dynamic Traffic for IEEE 802.11ah , 2017, Sensors.

[109]  Dipankar Raychaudhuri,et al.  Backlogged queue based MAC frame aggregation , 2011, Pervasive Mob. Comput..

[110]  Der-Jiunn Deng,et al.  QoS/QoE Support for H.264/AVC Video Stream in IEEE 802.11ac WLANs , 2017, IEEE Systems Journal.

[111]  Hossam S. Hassanein,et al.  Selectivity function scheduler for IEEE 802.11e HCCA access mode , 2013, Wirel. Commun. Mob. Comput..

[112]  Vincenzo Mancuso,et al.  Control theoretic optimization of 802.11 WLANs: Implementation and experimental evaluation , 2012, Comput. Networks.

[113]  Javier Silvestre-Blanes,et al.  802.11n Performance analysis for a real multimedia industrial application , 2015, Comput. Ind..

[114]  Anant Sahai,et al.  Design of a low-latency, high-reliability wireless communication system for control applications , 2014, 2014 IEEE International Conference on Communications (ICC).

[115]  Parastoo Sadeghi,et al.  Enabling a Tradeoff between Completion Time and Decoding Delay in Instantly Decodable Network Coded Systems , 2014, IEEE Transactions on Communications.

[116]  Athanasios V. Vasilakos,et al.  A backoff algorithm based on self-adaptive contention window update factor for IEEE 802.11 DCF , 2017, Wirel. Networks.

[117]  Jen-Shun Yang,et al.  Ripple: a wireless token-passing protocol for multi-hop wireless mesh networks , 2006, IEEE Communications Letters.

[118]  Gianluca Cena,et al.  An enhanced MAC to increase reliability in redundant Wi-Fi networks , 2014, 2014 10th IEEE Workshop on Factory Communication Systems (WFCS 2014).

[119]  Chulho Chung,et al.  Saturation throughput analysis of IEEE 802.11ac TXOP sharing mode , 2015 .

[120]  Federico Tramarin,et al.  Tuning of IEEE 802.11 MAC for improving real-time in industrial wireless networks , 2012, Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012).

[121]  Paul J. M. Havinga,et al.  Wireless Industrial Monitoring and Control Networks: The Journey So Far and the Road Ahead , 2012, J. Sens. Actuator Networks.

[122]  Luiz Affonso Guedes,et al.  A new MAC scheme specifically suited for real-time industrial communication based on IEEE 802.11e , 2013, Comput. Electr. Eng..

[123]  Dong-Seong Kim,et al.  Dynamic rate adaptation for industrial WLAN , 2013, 2013 International Conference on ICT Convergence (ICTC).

[124]  John A. Stankovic,et al.  Research Directions for the Internet of Things , 2014, IEEE Internet of Things Journal.

[125]  Ricardo Moraes,et al.  A TDMA-based mechanism for real-time communication in IEEE 802.11e networks , 2010, 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010).

[126]  Prasant Mohapatra,et al.  Soft-TDMAC: A Software TDMA-Based MAC over Commodity 802.11 Hardware , 2009, IEEE INFOCOM 2009.

[127]  Jose Miguel Villalón Millán,et al.  An AIFSN Prediction Scheme for Multimedia Wireless Communications , 2015, 2015 24th International Conference on Computer Communication and Networks (ICCCN).

[128]  Tae-Jin Lee,et al.  Enhancement of IEEE 802.11ah MAC for M2M Communications , 2014, IEEE Communications Letters.

[129]  Hideki Tode,et al.  QoS-Aware Retransmission with Network Coding Based on Adaptive Cooperation with IEEE 802.11e EDCA , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[130]  Qian Zhang,et al.  Enabling TDMA for today's wireless LANs , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[131]  Boris Bellalta,et al.  Implementation and experimental evaluation of a Collision-Free MAC protocol for WLANs , 2015, 2015 IEEE International Conference on Communications (ICC).

[132]  Xinbing Wang,et al.  Latency-aware rate adaptation in 802.11n home networks , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[133]  Cigdem Sengul,et al.  Experiences with SoftToken: a token-based coordination layer for WLANs , 2015, Int. J. Commun. Syst..

[134]  Mehmet Fatih Tüysüz,et al.  An uninterrupted collision-free channel access scheme over IEEE 802.11 WLANs , 2013, 2013 IEEE Wireless Communications and Networking Conference (WCNC).

[135]  Song Han,et al.  A Double Disturbance Observer Design for Compensation of Unknown Time Delay in a Wireless Motion Control System , 2018, IEEE Transactions on Control Systems Technology.

[136]  Daniel Camps-Mur,et al.  Leveraging 802.11n frame aggregation to enhance QoS and power consumption in Wi-Fi networks , 2012, Comput. Networks.

[137]  R. Exel,et al.  Clock synchronization in IEEE 802.11 wireless LANs using physical layer timestamps , 2012, 2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings.

[138]  Polychronis Koutsakis,et al.  Token- and Self-Policing-Based Scheduling for Multimedia Traffic Transmission Over WLANs , 2011, IEEE Transactions on Vehicular Technology.

[139]  Lotfi Kamoun,et al.  QoS support of voice/video services under IEEE 802.11n WLANs , 2014, 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP).

[140]  Mohamed Othman,et al.  SRA-MSDU: Enhanced A-MSDU frame aggregation with selective retransmission in 802.11n wireless networks , 2013, J. Netw. Comput. Appl..

[141]  Lei Zheng,et al.  Performance analysis of grouping strategy for dense IEEE 802.11 networks , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[142]  José Alberto Fonseca,et al.  VTP-CSMA: A Virtual Token Passing Approach for Real-Time Communication in IEEE 802.11 Wireless Networks , 2007, IEEE Transactions on Industrial Informatics.

[143]  Henning Trsek,et al.  Clock Synchronization Over IEEE 802.11—A Survey of Methodologies and Protocols , 2017, IEEE Transactions on Industrial Informatics.

[144]  Giuseppe Lipari,et al.  Dynamic TXOP HCCA reclaiming scheduler with transmission time estimation for IEEE 802.11e real-time networks , 2012, MSWiM '12.

[145]  Elizabeth M. Belding-Royer,et al.  FreeMAC: framework for multi-channel mac development on 802.11 hardware , 2008, PRESTO '08.

[146]  Richard Candell,et al.  Industrial wireless: Problem space, success considerations, technologies, and future direction , 2017, 2017 Resilience Week (RWS).

[147]  Mats Björkman,et al.  Medium access control for wireless networks with diverse time and safety real-time requirements , 2016, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.

[148]  Michele Nogueira Lima,et al.  Avoiding Collisions by Time Slot Reduction Supporting Voice and Video in 802.11 Networks , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[149]  Chau Yuen,et al.  Coding-Based Data Broadcasting for Time-Critical Applications With Rate Adaptation , 2014, IEEE Transactions on Vehicular Technology.

[150]  Chau Yuen,et al.  Delay Minimization for Relay-Based Cooperative Data Exchange With Network Coding , 2013, IEEE/ACM Transactions on Networking.

[151]  Xiaodong Wang,et al.  Adaptive Optimization of IEEE 802.11 DCF Based on Bayesian Estimation of the Number of Competing Terminals , 2006, IEEE Transactions on Mobile Computing.

[152]  Aphirak Jansang,et al.  Adjustable TXOP mechanism for supporting video transmission in IEEE 802.11e HCCA , 2011, EURASIP J. Wirel. Commun. Netw..

[153]  Magnus Jonsson,et al.  Towards Reliable Wireless Industrial Communication With Real-Time Guarantees , 2009, IEEE Transactions on Industrial Informatics.

[154]  Saewoong Bahk,et al.  Group-based contention in IEEE 802.11ah networks , 2014, 2014 International Conference on Information and Communication Technology Convergence (ICTC).

[155]  Arturo Azcorra,et al.  Optimal Configuration of 802.11e EDCA for Real-Time and Data Traffic , 2010, IEEE Transactions on Vehicular Technology.

[156]  Klaus Moessner,et al.  Resource Reservation Schemes for IEEE 802.11-Based Wireless Networks: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[157]  Huachun Zhou,et al.  Det-WiFi: A Multihop TDMA MAC Implementation for Industrial Deterministic Applications Based on Commodity 802.11 Hardware , 2017, Wirel. Commun. Mob. Comput..

[158]  Songwu Lu,et al.  Toward History-Aware Robust 802.11 Rate Adaptation , 2013, IEEE Transactions on Mobile Computing.

[159]  Xiang-Yang Li,et al.  XOR Rescue: Exploiting Network Coding in Lossy Wireless Networks , 2009, 2009 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[160]  Alessandra Flammini,et al.  An application of IEEE 802.11ac to Smart Grid automation based on IEC 61850 , 2016, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.

[161]  Markus Rentschler,et al.  Towards a reliable parallel redundant WLAN black channel , 2012, 2012 9th IEEE International Workshop on Factory Communication Systems.

[162]  Song Han,et al.  Improving Control Performance by Minimizing Jitter in RT-WiFi Networks , 2014, 2014 IEEE Real-Time Systems Symposium.

[163]  Cristina Cano,et al.  CSMA with Enhanced Collision Avoidance: A Performance Assessment , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[164]  Kok-Lim Alvin Yau,et al.  QoS in IEEE 802.11-based wireless networks: A contemporary review , 2014, J. Netw. Comput. Appl..

[165]  Song Han,et al.  RT-WiFi: Real-Time High-Speed Communication Protocol for Wireless Cyber-Physical Control Applications , 2013, 2013 IEEE 34th Real-Time Systems Symposium.

[166]  Marek Natkaniec,et al.  A novel IEEE 802.11aa intra-AC prioritization method for video transmissions , 2014, 2014 IEEE Global Communications Conference.

[167]  Michele Luvisotto,et al.  An innovative approach to rate adaptation in IEEE 802.11 real-time industrial networks , 2016, 2016 IEEE World Conference on Factory Communication Systems (WFCS).

[168]  Jie Wang,et al.  Instantly Decodable Network Coding for Multiple Unicast Retransmissions in Wireless Point-to-Multipoint Networks , 2016, IEEE Transactions on Vehicular Technology.

[169]  Gianluca Cena,et al.  Enhancing Communication Determinism in Wi-Fi Networks for Soft Real-Time Industrial Applications , 2017, IEEE Transactions on Industrial Informatics.

[170]  Tamma Bheemarjuna Reddy,et al.  DEARF: Delay and Energy Aware RAW Formation Scheme to Support Delay Sensitive M2M Traffic in IEEE 802.11ah Networks , 2017, ArXiv.

[171]  Huan Zhao,et al.  An efficient spatial group restricted access window scheme for IEEE 802.11ah networks , 2016, 2016 Sixth International Conference on Information Science and Technology (ICIST).

[172]  Yang Xiao,et al.  Polling in the frequency domain: a new MAC protocol for industrial wireless network for factory automation , 2015, Int. J. Ad Hoc Ubiquitous Comput..

[173]  Jonathan Loo,et al.  Energy-Delay Aware Restricted Access Window with Novel Retransmission for IEEE 802.11ah Networks , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[174]  Michele Luvisotto,et al.  Improved Rate Adaptation strategies for real-time industrial IEEE 802.11n WLANs , 2015, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).

[175]  Lawrence Wai-Choong Wong,et al.  Routing, power control and rate adaptation: A Q-learning-based cross-layer design , 2016, Comput. Networks.

[176]  Der-Jiunn Deng,et al.  Contention window optimization for ieee 802.11 DCF access control , 2008, IEEE Transactions on Wireless Communications.

[177]  Henning Trsek,et al.  An isochronous medium access for real-time wireless communications in industrial automation systems - A use case for wireless clock synchronization , 2011, 2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication.

[178]  Arturo Azcorra,et al.  Experimental QoE Evaluation of Multicast Video Delivery over IEEE 802.11aa WLANs , 2019, IEEE Transactions on Mobile Computing.

[179]  Evgeny M. Khorov,et al.  Modelling machine type communication in IEEE 802.11ah networks , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).