Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle

Abstract A novel fuel-to-electricity conversion technology resembling a fuel cell has been developed based on the perovskite solar cell principle using a perovskite, e.g. La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3− δ and an ionic nanocomposite material as a core functional layer, sandwiched between n- and p-conducting layers. The conversion process makes use of semiconductor energy bands and junctions properties. The physical properties of the junction and alignment of the semiconductor energy band allow for direct ion transport and prevent internal electronic short-circuiting, while at the same time avoiding losses at distinct electrolyte/electrode interfaces typical to conventional fuel cells. The new device achieved a stable power output of 1080 mWcm −2 at 550 °C in converting hydrogen fuel into electricity.

[1]  Q. Jia,et al.  Ionic Conductivity Increased by Two Orders of Magnitude in Micrometer-Thick Vertical Yttria-Stabilized ZrO2 Nanocomposite Films. , 2015, Nano letters.

[2]  Nigel P. Brandon,et al.  Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8 O 3 Cathodes for Intermediate-Temperature SOFCs , 2004 .

[3]  Yanhong Luo,et al.  Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers , 2015, Nano Research.

[4]  B. Zhu,et al.  High performance transition metal oxide composite cathode for low temperature solid oxide fuel cells , 2012 .

[5]  M. Grätzel,et al.  The Role of a “Schottky Barrier” at an Electron‐Collection Electrode in Solid‐State Dye‐Sensitized Solar Cells , 2006 .

[6]  J. Maier,et al.  Proton Conduction in Dense and Porous Nanocrystalline Ceria Thin Films , 2013 .

[7]  Peter Lund,et al.  A new energy conversion technology joining electrochemical and physical principles , 2012 .

[8]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[9]  Mogens Bjerg Mogensen,et al.  Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .

[10]  Venkataraman Thangadurai,et al.  Amphoteric oxide semiconductors for energy conversion devices: a tutorial review. , 2013, Chemical Society reviews.

[11]  T. Rojo,et al.  Nanoparticles of La0.8Ca0.2Fe0.8Ni0.2O3−δ perovskite for solid oxide fuel cell application , 2010 .

[12]  Peter Lund,et al.  A new energy conversion technology based on nano-redox and nano-device processes , 2013 .

[13]  L. Gauckler,et al.  Microstructure‐Property Relations of Solid Oxide Fuel Cell Cathodes and Current Collectors Cathodic Polarization and Ohmic Resistance , 1996 .

[14]  M. Rieu,et al.  An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs , 2013 .

[15]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[16]  Siwei Wang,et al.  Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network , 2014 .

[17]  H. Ueno,et al.  Direct biomass fuel cell (BMFC) for polymeric biomass with anode/catalyst device comprising a mesoporous n-semiconductor film/Co, Ni or Cu thin layer , 2013 .

[18]  San Ping Jiang,et al.  A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes , 2002 .

[19]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[20]  B. Zhu,et al.  Carbon anode in direct carbon fuel cell , 2010 .

[21]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[22]  J. Martynczuk,et al.  On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature , 2013 .

[23]  M. Muhammed,et al.  Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature s , 2011 .

[24]  Junichi Nemoto,et al.  Direct Biomass Fuel Cell (BMFC) with Anode/Catalyst Comprising a Nanocomposite of a Mesoporous n-Semiconductor Film and a Metal Thin Layer: A New Concept of Catalyst Design , 2012, Catalysis Letters.

[25]  Ch. Ftikos,et al.  Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3-δ-based perovskite oxides , 1999 .

[26]  Suparna Banerjee,et al.  Enhanced Ionic Conductivity in Ce0.8Sm0.2O1.9: Unique Effect of Calcium Co‐doping , 2007 .

[27]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[28]  Liangdong Fan,et al.  Fuel cells based on electrolyte and non-electrolyte separators , 2011 .

[29]  F. Chen,et al.  Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones , 2010 .

[30]  Rizwan Raza,et al.  An Electrolyte‐Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity , 2011 .

[31]  Peter Lund,et al.  Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials , 2015 .

[32]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[33]  Guntae Kim,et al.  Thermodynamic and electrical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and La0.6Sr0.4Co0.2Fe0.8O3−δ for intermediate-temperature solid oxide fuel cells , 2013 .

[34]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.