On a Box-Constrained Linear Symmetric Cone Optimization Problem
暂无分享,去创建一个
Yi Xu | Xihong Yan | Yi Xu | Xihong Yan
[1] Kim-Chuan Toh,et al. An inexact primal–dual path following algorithm for convex quadratic SDP , 2007, Math. Program..
[2] R. Saigal,et al. Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .
[3] J. M. Martínez,et al. A new trust region algorithm for bound constrained minimization , 1994 .
[4] Franz Rendl,et al. Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..
[5] Kim-Chuan Toh,et al. A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..
[6] H. Upmeier. ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .
[7] J. Sturm. Similarity and other spectral relations for symmetric cones , 2000 .
[8] Francisco Facchinei,et al. An Active Set Newton Algorithm for Large-Scale Nonlinear Programs with Box Constraints , 1998, SIAM J. Optim..
[9] Michael J. Todd,et al. Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..
[10] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[11] Farid Alizadeh,et al. Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..
[12] Yinyu Ye,et al. Interior point algorithms: theory and analysis , 1997 .
[13] José Mario Martínez,et al. Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients , 2002, Comput. Optim. Appl..
[14] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[15] Kim-Chuan Toh,et al. Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..
[16] Donald Goldfarb,et al. Second-order cone programming , 2003, Math. Program..
[17] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[18] William W. Hager,et al. Recent Advances in Bound Constrained Optimization , 2005, System Modelling and Optimization.
[19] Yi Xu,et al. A feasible direction method for the semidefinite program with box constraints , 2011, Appl. Math. Lett..
[20] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[21] L. N. Vicente,et al. Trust-Region Interior-Point Algorithms for Minimization Problems with Simple Bounds , 1996 .
[22] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[23] Franz Rendl,et al. An Augmented Primal-Dual Method for Linear Conic Programs , 2008, SIAM J. Optim..