On a Box-Constrained Linear Symmetric Cone Optimization Problem

In this paper, an analytical expression of the optimal solution for a box-constrained linear symmetric cone optimization problem is proposed. The resulting theories are established based on the theory of the spectral decomposition of a symmetric cone. Moreover, we apply our results to develop algorithms for solving several symmetric cone optimization problems and conduct some preliminary numerical experiments to show the performance of the developed algorithms.

[1]  Kim-Chuan Toh,et al.  An inexact primal–dual path following algorithm for convex quadratic SDP , 2007, Math. Program..

[2]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[3]  J. M. Martínez,et al.  A new trust region algorithm for bound constrained minimization , 1994 .

[4]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[5]  Kim-Chuan Toh,et al.  A Newton-CG Augmented Lagrangian Method for Semidefinite Programming , 2010, SIAM J. Optim..

[6]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[7]  J. Sturm Similarity and other spectral relations for symmetric cones , 2000 .

[8]  Francisco Facchinei,et al.  An Active Set Newton Algorithm for Large-Scale Nonlinear Programs with Box Constraints , 1998, SIAM J. Optim..

[9]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[10]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[11]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[12]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[13]  José Mario Martínez,et al.  Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients , 2002, Comput. Optim. Appl..

[14]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[15]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[16]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[17]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[18]  William W. Hager,et al.  Recent Advances in Bound Constrained Optimization , 2005, System Modelling and Optimization.

[19]  Yi Xu,et al.  A feasible direction method for the semidefinite program with box constraints , 2011, Appl. Math. Lett..

[20]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[21]  L. N. Vicente,et al.  Trust-Region Interior-Point Algorithms for Minimization Problems with Simple Bounds , 1996 .

[22]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[23]  Franz Rendl,et al.  An Augmented Primal-Dual Method for Linear Conic Programs , 2008, SIAM J. Optim..