A precise robust matrix root-clustering analysis with respect to polytopic uncertainty
暂无分享,去创建一个
Dimitri Peaucelle | Denis Arzelier | Olivier Bachelier | Jacques Bernussou | J. Bernussou | D. Peaucelle | D. Arzelier | O. Bachelier
[1] B. Barmish. Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .
[2] J. Geromel,et al. A new discrete-time robust stability condition , 1999 .
[3] Rama K. Yedavalli,et al. Eigenstructure perturbation analysis in disjointed domains for linear uncertain systems , 1997 .
[4] S. Gutman,et al. A general theory for matrix root-clustering in subregions of the complex plane , 1981 .
[5] J. Bernussou,et al. A new robust D-stability condition for real convex polytopic uncertainty , 2000 .
[6] P. Peres,et al. a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .
[7] P. Gahinet,et al. H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..
[8] Olivier Bachelier,et al. Bounds for uncertain matrix root-clustering in a union of subregions , 1999 .
[9] M. Safonov. Stability margins of diagonally perturbed multivariable feedback systems , 1982 .
[10] J. Daafouz,et al. Output feedback disk pole assignment for systems with positive real uncertainty , 1996, IEEE Trans. Autom. Control..
[11] B. R. Barmish,et al. A survey of extreme point results for robustness of control systems, , 1993, Autom..
[12] P. Peres,et al. H ∞ guaranteed cost control for uncertain continuous-time linear systems , 1993 .
[13] Liu Hsu,et al. LMI characterization of structural and robust stability , 1998 .
[14] A. Tits,et al. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .