Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie
暂无分享,去创建一个
[1] Guillermo Moreno-Socías,et al. Degrevlex Gröbner bases of generic complete intersections , 2003 .
[2] J. Faugère,et al. On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .
[3] Miles Reid,et al. Commutative Ring Theory , 1989 .
[4] Ralf Fröberg,et al. An inequality for Hilbert series of graded algebras. , 1985 .
[5] Aviezri S. Fraenkel,et al. Complexity of problems in games, graphs and algebraic equations , 1979, Discret. Appl. Math..
[6] Mohab Safey El Din,et al. Strong bi-homogeneous Bézout theorem and its use in effective real algebraic geometry , 2006, ArXiv.
[7] Philippe Loustaunau,et al. On the Decoding of Cyclic Codes Using Gröbner Bases , 1997, Applicable Algebra in Engineering, Communication and Computing.
[8] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[9] Maria Grazia Marinari,et al. The shape of the Shape Lemma , 1994, ISSAC '94.
[10] Daniel Augot. Description of Minimum Weight Codewords of Cyclic Codes by Algebraic Systems , 1996 .
[11] Hideki Imai,et al. Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption , 1988, EUROCRYPT.
[12] Antoine Joux,et al. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.
[13] Neal Koblitz,et al. Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.
[14] Alex Biryukov,et al. Block Ciphers and Systems of Quadratic Equations , 2003, FSE.
[15] Robert J. McEliece,et al. A public key cryptosystem based on algebraic coding theory , 1978 .
[16] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[17] Frederik Armknecht,et al. Algebraic Attacks on Combiners with Memory , 2003, CRYPTO.
[18] Massimo Caboara,et al. The Chen-Reed-Helleseth-Truong Decoding Algorithm and the Gianni-Kalkbrenner Gröbner Shape Theorem , 2002, Applicable Algebra in Engineering, Communication and Computing.
[19] Barry M. Trager,et al. Degree reduction under specialization , 2001 .
[20] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[21] Jacques Patarin,et al. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms , 1996, EUROCRYPT.
[22] Patrizia M. Gianni,et al. Properties of Gröbner bases under specializations , 1987, EUROCAL.
[23] Xuemin Chen,et al. Decoding the (47, 24, 11) quadratic residue code , 2001, IEEE Trans. Inf. Theory.
[24] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[25] Daniel Lazard,et al. Solving systems of algebraic equations , 2001, SIGS.
[26] Patrick Fitzpatrick,et al. Comparison of Two Algorithms for Decoding Alternant Codes , 1998, Applicable Algebra in Engineering, Communication and Computing.
[27] Michael Kalkbrener,et al. Converting Bases with the Gröbner Walk , 1997, J. Symb. Comput..
[28] Lorenzo Robbiano,et al. Computational aspects of commutative algebra , 1989 .
[29] Trieu-Kien Truong,et al. Algebraic decoding of the (32, 16, 8) quadratic residue code , 1990, IEEE Trans. Inf. Theory.
[30] EIMEAR BYRNE,et al. Gröbner Bases over Galois Rings with an Application to Decoding Alternant Codes , 2001, J. Symb. Comput..
[31] John F. Humphreys. Algebraic decoding of the ternary (13, 7, 5) quadratic residue code , 1992, IEEE Trans. Inf. Theory.
[32] Russel J. Higgs,et al. Decoding the ternary Golay code , 1993, IEEE Trans. Inf. Theory.
[33] Jean-Charles Faugère,et al. Complexity of Gröbner basis computation for Semi-regular Overdetermined sequences over F_2 with solutions in F_2 , 2002 .
[34] Massimiliano Sala,et al. On the Gröbner bases of some symmetric systems and their application to coding theory , 2003, J. Symb. Comput..
[35] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[36] F. S. Macaulay,et al. The Algebraic Theory of Modular Systems , 1972 .
[37] Michael Eugene Stillman,et al. On the Complexity of Computing Syzygies , 1988, J. Symb. Comput..
[38] Patrizia M. Gianni,et al. Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.
[39] C. Chester,et al. An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[40] Daniel Augot. Étude algèbrique des mots de poids minimum des codes cycliques, méthodes d'algèbre linéaire sur les corps finis , 1993 .
[41] Matthew J. B. Robshaw,et al. Essential Algebraic Structure within the AES , 2002, CRYPTO.
[42] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[43] Elwyn R. Berlekamp,et al. On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[44] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[45] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[46] Aviezri S. Fraenkel,et al. Complexity of Solving Algebraic Equations , 1980, Inf. Process. Lett..
[47] Tor Helleseth,et al. General principles for the algebraic decoding of cyclic codes , 1994, IEEE Trans. Inf. Theory.
[48] J. Faugère,et al. Efficient decoding of (binary) cyclic codes above the correction capacity of the code using grobner bases , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[49] Tor Helleseth,et al. Algebraic decoding of cyclic codes: A polynomial ideal point of view , 1993 .
[50] D. Anick,et al. Thin algebras of embedding dimension three , 1986 .
[51] T. T. Moh,et al. A public key system with signature and master key functions , 1999 .
[52] Willi Meier,et al. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.
[53] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[54] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[55] Jacques Patarin,et al. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'88 , 1995, CRYPTO.
[56] Peter L. Montgomery,et al. A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.
[57] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[58] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[59] Steve Szabo,et al. Complexity Issues in Coding Theory , 1997 .
[60] Josef Pieprzyk,et al. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations , 2002, ASIACRYPT.
[61] Carlo Traverso,et al. “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.
[62] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[63] Bruno Buchberger,et al. A note on the complexity of constructing Gröbner-Bases , 1983, EUROCAL.
[64] Marc Giusti,et al. Some Effectivity Problems in Polynomial Ideal Theory , 1984, EUROSAM.
[65] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[66] G Moreno-Socias,et al. Autour De La Fonction De Hilbert-samuel (Escaliers D'ideaux Polynomiaux) , 1991 .
[67] Tor Helleseth,et al. Use of Grobner bases to decode binary cyclic codes up to the true minimum distance , 1994, IEEE Trans. Inf. Theory.
[68] Jean-Charles Faugère. Algebraic cryptanalysis of HFE using Gröbner bases , 2002 .
[69] Philippe Gimenez,et al. Computing the Castelnuovo–Mumford regularity of some subschemes of PKn using quotients of monomial ideals , 2001 .
[70] Carlo Traverso,et al. Effective methods in algebraic geometry , 1991 .