Controlling flow turbulence with moving controllers

Abstract. In this work, we consider how to improve the efficiency of controlling flow turbulence in two-dimensional Navier-Stokes equations. We suggest a control strategy which applies local feedback injections by moving controllers. In the moving frame, this strategy is equivalent to adding a gradient force term in the governing equation. It is shown that with the moving controllers, flow turbulence can be controlled more efficient than the usual pinning strategy with static controllers, provided that the number of controllers and the injection energy are the same. The physical mechanism underlying this higher control efficiency is heuristically analyzed. The advantages and difficulties of the proposed control strategy in practical applications are discussed.

[1]  Mohamed Gad-el-Hak Flow Control: Contents , 2000 .

[2]  H. Liepmann,et al.  Control of laminar-instability waves using a new technique , 1982, Journal of Fluid Mechanics.

[3]  Haecheon Choi,et al.  Active control of flow over a sphere for drag reduction at a subcritical Reynolds number , 2004, Journal of Fluid Mechanics.

[4]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[5]  Hong Zhang,et al.  Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. L. Hudson,et al.  Suppressing spatiotemporal disorder via local perturbations in an electrochemical cell. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  S Boccaletti,et al.  Controlling and synchronizing space time chaos. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  S Boccaletti,et al.  Experimental targeting and control of spatiotemporal chaos in nonlinear optics. , 2004, Physical review letters.

[9]  Aranson,et al.  Controlling spatiotemporal chaos. , 1994, Physical review letters.

[10]  Qu,et al.  Controlling spatiotemporal chaos in coupled map lattice systems. , 1994, Physical review letters.

[11]  John Kim,et al.  Control of turbulent boundary layers , 2003 .

[12]  Neubecker,et al.  Experimental control of unstable patterns and elimination of spatiotemporal disorder in nonlinear optics , 2000, Physical review letters.

[13]  Paul Manneville,et al.  Phase turbulence in the two-dimensional complex Ginzburg-Landau equation , 1996 .

[14]  Omar Ghattas,et al.  Optimal Control of Two- and Three-Dimensional Incompressible Navier-Stokes Flows , 1997 .

[15]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[16]  T. Klinger,et al.  Mode selective control of drift wave turbulence. , 2001, Physical review letters.

[17]  Shuguang Guan,et al.  Controllability of flow turbulence. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Andrew Pollard,et al.  Passive and active control of near-wall turbulence , 1998 .

[19]  Sedat Biringen,et al.  Active control of transition by periodic suction‐blowing , 1984 .

[20]  G. Hu,et al.  Controlling Turbulence in the Complex Ginzburg-Landau Equation , 1998 .

[21]  S. Sinha,et al.  Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation. , 2001, Physical review letters.

[22]  Nadine Aubry,et al.  Feedback control of a flow past a cylinder via transverse motion , 2003 .

[23]  Visarath In,et al.  Control and synchronization of chaos in high dimensional systems: Review of some recent results. , 1997, Chaos.

[24]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[25]  John Kim,et al.  Effects of hydrophobic surface on skin-friction drag , 2004 .

[26]  Ljupco Kocarev,et al.  Controlling spatiotemporal chaos in coupled nonlinear oscillators , 1997 .

[27]  Parlitz,et al.  Synchronization and control of coupled ginzburg-landau equations using local coupling , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Mohamed Gad-el-Hak Flow Control: Flow Control , 2000 .

[29]  Ruben Rathnasingham,et al.  Active control of turbulent boundary layers , 2003, Journal of Fluid Mechanics.

[30]  Alexander S. Mikhailov,et al.  Controlling Chemical Turbulence by Global Delayed Feedback: Pattern Formation in Catalytic CO Oxidation on Pt(110) , 2001, Science.

[31]  Jinghua,et al.  Analytical study of spatiotemporal chaos control by applying local injections , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Juergen Kurths,et al.  Turbulence control by developing a spiral wave with a periodic signal injection in the complex Ginzburg-Landau equation. , 2002 .

[33]  N. V. Nikitin Turbulent Channel Flow with an Artificial Two-Dimensional Wall Layer , 2003 .

[34]  P. L. Evans,et al.  STEADY AND UNSTEADY SOLUTIONS FOR COATING FLOW ON A ROTATING HORIZONTAL CYLINDER: TWO-DIMENSIONAL THEORETICAL AND NUMERICAL MODELING , 2004 .

[35]  Shuguang Guan,et al.  Controlling flow turbulence , 2003 .

[36]  T. Lagerstedt,et al.  Polymer additive mixing and turbulent drag reduction , 1977 .

[37]  Kwing-So Choi,et al.  Turbulent drag reduction by Lorentz force oscillation , 2004 .

[38]  Siyang Yang,et al.  Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations , 2002 .

[39]  Raúl Montagne,et al.  Dynamic spectral analysis of phase turbulence , 2003 .

[40]  Jason L. Speyer,et al.  Application of reduced-order controller to turbulent flows for drag reduction , 2001 .

[41]  Gang Hu,et al.  Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[43]  Daniel J Gauthier,et al.  Experimental control of cardiac muscle alternans. , 2002, Physical review letters.

[44]  E Schöll,et al.  Comparison of time-delayed feedback schemes for spatiotemporal control of chaos in a reaction-diffusion system with global coupling. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  G. Wei,et al.  Controlling wake turbulence. , 2002, Physical review letters.

[46]  W. Ditto,et al.  Introduction: Control and synchronization of chaos. , 1997, Chaos.