Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film.

We study the propagation of light along a chain of 20-nm-spaced gold particles lying onto a silica substrate in which a metallic film can be incorporated. We first discuss, for a pure dielectric substrate, the specificities of the chain modes as compared to larger separation distances where far-field coupling dominates. We then show how the introduction of a buried metallic film allows a substantial increase in the propagation lengths. Finally, we discuss the crosstalk between two adjacent chains, with and without the buried metallic layer, for applications to ultra-compact interconnects.

[1]  S. Linden,et al.  Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. , 2001, Physical review letters.

[2]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[3]  Petru Ghenuche,et al.  Cavity resonances in finite plasmonic chains , 2007 .

[4]  Olivier J. F. Martin,et al.  Electromagnetic scattering in polarizable backgrounds , 1998 .

[5]  Romain Quidant,et al.  Near-field optical transmittance of metal particle chain waveguides. , 2004, Optics express.

[6]  S. Maier,et al.  Plasmonics: Metal Nanostructures for Subwavelength Photonic Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Olivier J F Martin,et al.  Optical interactions in a plasmonic particle coupled to a metallic film. , 2006, Optics express.

[8]  K. Fung,et al.  A computational study of the optical response of strongly coupled metal nanoparticle chains , 2008 .

[9]  A. Dereux,et al.  Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains , 2004 .

[10]  Harry A. Atwater,et al.  Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy , 2002 .

[11]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[12]  C. Girard Near fields in nanostructures , 2005 .

[13]  M. Paulus,et al.  Light propagation and scattering in stratified media: a Green’s tensor approach , 2001 .

[14]  G. K. Wehner,et al.  SPUTTERING THRESHOLDS AND DISPLACEMENT ENERGIES , 1960 .

[15]  H. Chu,et al.  Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain , 2008 .

[16]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[17]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[18]  Romain Quidant,et al.  Coupling localized and extended plasmons to improve the light extraction through metal films. , 2007, Optics express.

[19]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[20]  A. Hohenau,et al.  The optical near-field of gold nanoparticle chains , 2005 .

[21]  E. Togan,et al.  Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains. , 2007, Optics express.

[22]  Petru Ghenuche,et al.  Cumulative plasmon field enhancement in finite metal particle chains. , 2005, Optics letters.